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Abstract:One of the problems that has engaged the attention of mathematics educators is how
to facilitate learners in making sense of symbolic mathematics. Meaning for symbols, and war-
rant for reasoning about representations in mathematics, is drawn from different sources of
control, which I broadly classify as semantic (real world referents), syntactic (rules and pro-
cedures) and structural (translations between representations). Researchers have explored in
detail how to enrich semantic sources of control for reasoning about symbolism. Recent re-
search on mathematical representations however has pointed to the importance of structure as
a source of control. A long range view of different topics in elementary mathematics - whole
numbers, fractions and beginning algebra - shows the importance of structural understanding.
I provide an analysis of students’ understanding of the domain of whole numbers drawing from
available literature. Following this, I indicate briefly how by drawing on students’ understand-
ing of whole numbers, structural control on symbolic mathematics can be provided for while
designing the curriculum in the topic areas of fractions andbeginning algebra.

Introduction

Cognitive studies of students’ learning of mathematics have steadily accumulated findings for
some decades now. By cognitive studies, I mean studies that probe students’ understanding
and the change in this understanding as learning takes place. The category includes studies
of student errors and misconceptions, theories that explain student conceptions, studies that
examine students’ response to instruction and micro-genetic studies of changes in strategies
used to solve specific types of problems. In this article I want to examine the implications such
studies have for curriculum and instructional design of specific areas of school mathematics
education. In doing so, I will not be describing new trends inmathematics education research,
as much as revisiting some older trends. I believe that the studies that I shall refer to, some
of them from two decades ago, hold important implications for instruction that are yet to be
elaborated. Indeed, some recent teaching studies have drawn insights from the earlier body of
work. Such studies are difficult to implement and do not always have clear generalizable results.
However, they push the understanding of the domain further,and a clearer and more refined
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understanding of topic domains, especially when shared with the community of practitioners,
contributes to improving teaching and learning.

A recent review article attempts to comprehensively examine the implications of cogni-
tive studies, as described above, for the domain of whole number knowledge (De Corte and
Verschaffel, 2006). The article develops a four-part framework to draw implications from the
findings of research studies for designing instruction. Thefour components discussed are (i)
Competence (ii) Learning (iii) Instructional environments and (iv) Assessment. Some of the
implications discussed by De Corte and Verschaffel generalize beyond the domain of whole
number arithmetic, especially those concerning the learning process or the instructional setting.
For example, the principle that learning is situated and collaborative is valid for learning any
topic in mathematics or the learning of other school subjects. In this article, I shall not address
such issues in any detail. Rather I shall take a more domain-centric view, and examine how
studies of learning help to illuminate the structure of the domain from the viewpoint of teaching
and learning. Hence of the four components listed above, my focus will be on the first, namely,
competence. Here I shall seek to go beyond whole number knowledge, but still restrict myself
to elementary mathematics.

A part of the aim in this article will be to study multiple domains to extract common features
and also to become aware of important differences. The domains I will focus on are whole
number arithmetic, rational numbers and beginning algebra. While each of these domains have
been studied in great depth and detail over the last few decades, attempts to systematically
compare the findings across these domains have been few. New insights are likely to arise from
such a comparison; in this article I shall take some initial steps in this direction. As may be
expected, one will need to go beyond empirical findings attached to specific tasks or concepts
in order to obtain a more general perspective. At the same time, it is necessary not to restrict
oneself to theories that are too general in scope, since instructional design has to concern itself
with the details of a particular domain. Hence middle level theories will recieve more attention.
In particular, I will try to interconnect conceptual and semantic theories of the domains of whole
number arithmetic, rational numbers and algebra.

Researchers in mathematics education are paying increasing attention to the role of repre-
sentations in mathematics learning. Mathematics is distinctive in that the objects of discourse
are not accessible to direct perception or through instrumentation. The objects of mathematics
have been described as virtual and as being constituted by the representations and the way rep-
resentations are used in mathematical discourse (Sfard, 2000). Researchers have attempted to
systematically outline a theory of the way representationsfunction in mathematics and in the
learning of mathematics (Goldin and Kaput, 1996; Duval, 2006). A careful attention to repre-
sentations is certainly an important part of curriculum design. Hence some ideas and concepts
introduced by these theoretical studies will inform the discussion below.

Besides natural language, humans use a wide range of representations (or ‘signs’ to use
the terminology of semiotics) for communication and as an aid to remembering and thinking.
A majority of non-linguistic signs in human cultures, whichinclude icons, diagrams, certain
kinds of inscriptions, gestures and tokens, have a visual orspatial aspect. These signs have
a variety of functions. Some of them point to or call attention to something. Some stand for
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or represent other objects, and some add emphasis or tone to communication. Each function
may be performed in a variety of ways. For example, representing can be depictive, iconic or
metaphorical (Goldin-Meadow, 2006).

The use of one kind of representation, namely written symbols is salient to children in their
experience of school mathematics. This may be a consequenceof the fact that current peda-
gogical practices lay undue emphasis on symbol manipulation. However, learning to interpret
and use symbols is an inescapable part of modern mathematics. The development of power-
ful mathematics became possible as increasingly efficient symbolism was invented. This is
because in mathematics inscribed symbols have, apart from the functions of representations
discussed above, an important additional function, namely, computation. When a problem is
mathematized and represented with symbols, the solution proceeds usually by computing with
symbols. Computing with symbols involves transforming a visual array of (written) symbols in
specified ways to yield other interpretable symbols. The transformations are usually multiple
transformations chained into a sequence. The computational and representational functions of
mathematical symbols are often in tension. Preoccupation with one function may obscure the
other. By virtue of the fact that computational processes inmathematics typically act directly on
symbols (usually) inscribed on paper, symbols acquire an object like character. In the course of
computation, symbols direct attention away from their possible referents and seemingly empty
themselves of meaning (Arzarello et al., 2001). This leads to one of the central problems of
mathematics pedagogy that has engaged researchers and curriculum planners – to restore mean-
ing making as an integral part of learning mathematics.

Making sense or meaning is related to the assurance with which inferences are made. Sources
of meaning are also at the same time sources of warrant for theinferences that one draws, or
in the words of some mathematics educators, sources of control (Balacheff, 2001). There are
multiple sources of meaning that can and must be drawn upon tomake sense of mathematics.
To take an example discussed by Sfard (2000), how does one know that 2

3
and 12

18
are the same

(equal)? One can produce a diagram that shows how 2 parts out of 3 is the same as 12 parts out
of 18. One can explore the situations where 2 cakes are sharedequally among 3 children, and
where 12 cakes are shared equally among 18 children, and discover that the children in both
the situations recieve the same share. One may apply a rule, of multiplying the numerator and
denominator in2

3
by the same number 6, and obtain12

18
. For an individual student, each of these

sources of meaning lead to different strengths of belief or assurance. Moreover, the sense of ‘be-
ing the same’ or ‘being equal’ in each of these situations is different. There is a danger that the
use of multiple sources for meaning making can result in understanding becoming fragmented
rather than integrated. Instructional design must not onlyensure that there are opportunities to
students to use these multiple sources, but must also allow students to integrate these different
sources by noticing and drawing parallels between the different situations. Hence analogical
reasoning has an important place in learning mathematics.

One can distinguish three sources of meaning or control for symbolic mathematics, while
remembering that such distinctions will at times prove inadequate in dealing with the complex
processes of reasoning and understanding. One source is thereal world, which includes both
physical or material objects and cultural objects belonging to the sphere of economics. The
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most common control of this kind comes from interpreting mathematical symbols to stand for
quantities and operations with quantities. We will call this source of meaning and control ‘se-
mantic’. Another source of meaning or control is the set of rules that govern the transformation
of symbols, which we will describe as ‘syntactic’. A third kind of control emerges from drawing
correspondences and analogies between different mathematical representations, which we will
term ‘structural’.

As students progress with learning mathematics, the relative importance of the different
sources of control will change. As more diverse representations become accessible, one would
expect reasoning to take on a more structural character. A preference for syntactic control may
be a result of instructional exposure, or of extent of practice. We have come across instances
where students who were exposed to concrete representations of the base ten units after years
of unsuccessful learning of multi-digit algorithms for whole numbers, still preferred to check
their inferences using algorithms rather than concrete representations. For example, to be sure
of the result of adding 3 hundreds to 4 hundreds, they would set up and implement the vertical
column addition algorithm.

Briefly speaking, when reasoning in a source domain exercises control over a target domain,
the possibility and the extent of control depend on how well understood the source domain is and
the richness of the connection between the source and the target domains. As several analyses
have pointed out translating between representational domains can strengthen the understanding
of not only the target domain, but also of the source domain. One of the claims made in this
article is that students’ understanding of whole numbers isa robust and continuing source of
control for later learning. The curriculum designer is often faced with the challenge of how
to allow for the possibility of such control. Since numbers are not objects in the world, but
mentally and discursively constructed entities, in the classification that I have presented above,
it would be appropriate to call this form of control ‘structural’.

Understanding Whole Number Arithmetic

Small counting numbers are among the simplest and the most ‘natural’ of mathematical con-
cepts acquired by children. (By ‘counting numbers’ or ‘whole numbers’, I mean the positive
integers.) This is attested by the fact that many cultures have developed counting numbers. What
accounts for the ease or ‘naturalness’ of the counting number concept? One explanation may
be found in the accounts by developmental psychologists. Firstly, the perception of numerosity
may have an innate basis that is shared with many mammals and other animals. Many animals
can distinguish between collections of objects that differin number, as long as the numbers
are small, or the differences are large. Human infants also display this ability. Counting acts
are readily imitated by young children and may be a part of thegrowing language capability.
Children reflect an understanding of the principles governing the language game of counting
surprisingly early (Gelman and Gallistel, 1978). However,whether this has a link with innate
conceptual preparedness to perceive numerosities is not clear. Children interestingly fail to use
their counting abilities, which may be well developed, to make inferences about quantity in
comparison tasks. The Piagetian number conservation task also elicits failures from young chil-
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dren indicating that it takes time to align their ability at verbal counting with their understanding
of cardinality (Sophian and Kailihiwa, 1998).

Another explanation for the ease of the counting number concept may be found in the na-
ture of the mental representations that constitute the number concept. There are suggestive
findings from neuroscience research that number representations in the brain may reflect spatial
organization akin to a mental number line (Izard and Dehaene, 2007). There are also converging
analyses of students’ developing competence in the domain of small whole numbers, which take
into account the detailed findings of empirical studies (Fuson, 1992; Steffe, 2002). In the act
of counting, number words function like symbolic tokens that are put in one-to-one correspon-
dence with objects. The fact that the sequence of number words has a natural correspondence
with a set of objects attended to sequentially, facilitatesthe consolidation of the internal rep-
resentation of number. Indeed, spoken words are not externalized representations that have an
enduring presence like material objects or inscriptions. Initially the number words are used in
the presence of objects, then in the presence of symbolic objects like the fingers or counters,
and finally the number words themselves serve as objects to becounted (Steffe, 2002, p.269).
Reflection on the experience of counting and of adding and subtracting small numbers leads
to the emergence of structure in the mental representation for number words. One fundamen-
tal change is the development of the cardinal structure on top of the ordinal structure of the
number words, signified at first by the count-to-cardinal andthe cardinal-to-count transitions
and by the gradual development of a nested, breakable, countable sequence of numbers (Fuson,
1992). The development of such a representation of number ispostulated to underlie the grow-
ing competence of the child in counting, and in addition and subtraction tasks. For sophisticated
counting strategies such as counting up from a given number or counting up by a given number
to emerge, the mental representation of the number sequencemust be available as an object on
which actions can be performed. These actions include the partitioning of the sequence into
fragments or joining fragments of the sequence to form new sequences. Such actions form the
basis for children’s developing strategies to deal with unitary, as opposed to multidigit addition
and subtraction operations (Fuson, 1992).

Analyses such as the above indicate that counting, unitary addition and subtraction are car-
ried out by actions on internal mental representations thatare analogous to actions on objects.
Moreover, the analogies between actions on objects and on elements of the number sequence are
direct and simple. Such internal representations functionboth as symbols, and as objects. Since
they can be produced at will, they have an immediacy that is not a feature of external repre-
sentations. This provides students with a strong source of meaning and a ground for assurance,
atleast in dealing with small numbers.

Extending the secure understanding of the number concept beyond the first few numbers
depends on understanding the decadal structure of the counting numbers. Internalizing this
structure for increasingly large numbers takes place in steps, which constitute major cognitive
achievements. Beyond the first ten or twenty numbers, the sequence must be continued on
the basis of the decadal patterns implicit in the spoken number words. The complexity of this
pattern varies across languages. Beyond hundred, a fairly regular decimal pattern takes over
counting. Initial experiences of imitating or using the decadal and decimal patterns may be
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in the spirit of the language game of counting. Soon, cultural necessity drives and reinforces
the identification of the decimal units in spoken number words with the concrete embodiments
in the form of monetary currency. The syntax of the spoken number words in the language of
instruction and the extent to which the children’s lives areintegrated into the monetary economy
are both likely to influence their learning of base ten numbers in the early years of schooling.

The generalization of the number concept to larger numbers requires different acts of inte-
gration. Firstly, individual counting acts only cover fragments of the number sequence; integra-
tion of these acts takes place by inserting the fragments in their right positions. Such integration
is guided by the decadal and decimal structure of numbers. Secondly, the decimal structure also
provides a compression of the counting acts and facilitatesa generalization by analogy. One can
thus count in jumps of ten by counting the tens as though they were units. Both forms of inte-
gration facilitate the development of the representation of increasingly large number sequences.
Sequential structures presumably develop in stages for clusters of the powers of ten, and is
generalized beyond them again by analogy. The number names therefore show a periodicity in
addition to the base structure. The thousands for example are counted in tens and hundreds,
as though they were a new unit. One must note that the countingof higher units signifies an
advanced understanding of multiplication, although it is still implicit. Over time, a generalized
linear representation of the number sequence that incorporates the decimal structure develops
and remains into adulthood. This is described by researchers as the sequence or ‘positioning’
understanding of numbers (Fuson, 1992; Treffers, 2001).

The sequence understanding is different from the structural understanding in which the num-
ber is composed through addition, subtraction or multiplication operations. Again this is guided
by the base ten structure which facilitates the decomposition and recomposition of a number on
the basis of the numbered and named decimal units. The structural understanding of multiunit
numbers is an operational rather than a counting concept. Itis consequent upon experiences
with the operations of addition, subtraction, quantitative comparison and estimation, which call
for composing and decomposing a number. Further, dealing with multiunits extends the implicit
understanding of the multiplication operation. The numberwords use linguistic cues to code the
additive and multiplicative composition of a number. In thenumber ‘two thousand and twenty
two’, we have ‘two [×] thousand and [+] twenty [2× 10] [+] two’. We notice that ‘and’ is used
between ‘thousand’ and ‘twenty’ to indicate addition, while addition is implicitly indicated by
juxtaposing ‘twenty’ and ‘two’. On the other hand juxtaposition of two and thousand implicitly
indicates multiplication. Despite these inconsistencies, children learn to distinguish multiplica-
tive and additive composition, presumably by using a combination of cues such as, linguistic
modifiers, sequence, stress or rhythm in vocalisation. The pattern of cues changes and becomes
more consistent as the units become larger.

For example, in Tamil, one of the major languages of SouthernIndia, the additive and mul-
tiplicative composition is distinguished by linguistic markers. The word for ‘twenty’ in Tamil is
iruvathuwhich is a modified form ofiru pathu, which literally means ‘two tens’. The word for
‘twenty two’ in Tamil is Iruvathi erendu. The multiplicative composition embedded in ‘twenty’
(two tens) is indicated by prefixing to the word for ‘ten’ the adjectival form of the word for
‘two’ – erenduchanged toiru. The additive composition implied by juxtaposing ‘two’ after
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‘twenty’ is indicated in Tamil by the vowel suffixee. The suffixeefor additive composition is
consistently followed even when bigger units are introduced: Erendayirathiirunoothi iruvathi
erendufor ‘two thousand two hundred and twenty two’. Notice that the linguistic marker for
multiplicative composition remains for the hundreds, but disappears for the thousands. In En-
glish, while the tens are modified to indicate multiplicative composition, for the hundreds and
beyond, multiplicative composition is indicated by juxtaposition, as is additive composition. It
is not clear if such language differences have instructional implications although it cannot be
ruled out. After all these linguistic markers may have arisen in order to sensitize native speakers
to the compositions embedded in number names. In many Indianlanguages, these modifiers
appear in the way multiplication tables are recited, including in the multiplication tables for
fractions1.

We have chosen an example from an Indian langague that shows arelativel regular number
word pattern, which is moreover transparent with regard to decimal structure. North Indian
languages are less regular in this respect. The point of thislinguistic exegesis however is that
implicit understanding of additive and multiplicative composition is already in place when chil-
dren begin to understand larger numbers. This implicit understanding is not often exploited
in generalizing the understanding of the composition of number through different units. Most
instructional approaches may focus on familiarising students with number names and consoli-
dating their sequential understanding.

The complex understanding of the decimal composition of numbers receives support from
the culture in the form of the base ten multiunits for monetary currency and other decimal
measures. Monetary value is of course an abstract measure not always appropriate for young
children. Additional pedagogical support for the multiunits through various concrete embod-
iments help children grasp the structure of numbers. Indeedstudies of students’ learning of
decimal numbers support the effectiveness of supporting constructs both for sequential and for
structural understanding of multiunit numbers (Fuson, 1992; Gravemeijer and Stephan, 2002).

The positional encoding present in the base ten numeration system imposes a different order
of difficulty. Here not only must children know the multiunitcomposition of numbers, but must
decode the positional cues that indicate how many of each unit is present. Although this fact
is well recognized, the distinction between the grouping and the positional principle is often
obscured in designing curricular sequences, with both principles being conflated into a ‘place
value’ concept. Many historical numeration systems such asthe Egyptian, exhibit the grouping
but not the positional principle. Children need to master both these principles. The decoding
of the positional cues may happen in two ways, the first by translating the numeral into the
number word, which explicit names the different units. However, children also need to be able
to translate the numeral into other representations of the units familiar to them. This is especially
important in making sense of the procedures that take advantage of the positional numerals.

With the positional numerals, children also first encounterthe use of the written symbols
in computation. Positional numerals have evolved so that simplified operational procedures

1In Tamil Nadu, traditional schools taught multiplication tables of fractions, a practice which was prevalent till
perhaps the early twentieth Century (Babu, 2004)
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can be constructed which consist of visually guided routines operating on inscriptions. In this
respect, the positional numerals are similar to algebra andembody syntactic compressions akin
to those present in algebra. This simplification of procedures comes at the cost of obscuring
the operational composition of the number. However the numerals are different from algebraic
notation in the compositional form being fixed and in the factthat language and culture support
the unpacking of the compositional structure. For most educated adults this is internalized
so well that the symbol ‘2736’ is paradoxically seen as beingmore transparent than the full
compositional form2 × 1000 + 7 × 100 + 3 × 10 + 6. For some students of course, the
compressed positional notation is a persistent source of difficulty.

To summarize, several factors combine to make the whole numbers more accessible to chil-
dren in comparison to other mathematical concepts. From theviewpoint of curriculum design
it is important to understand these factors in detail also asa preparation for the challenges that
lie in the teaching and learning of later, more advanced concepts. As discussed, whole number
learning already embodies complex cognitive accomplishments, which can function as valuable
resources to be drawn upon by the curriculum designer. In studies that we have carried out, we
have attempted to exploit the understanding of whole numbers to build pathways to the learning
of rational numbers and of beginning algebra, which I shall briefly indicate in the respective
concluding parts of the next two sections.

Working with Fractions

Unlike in the case of whole numbers, most children fail to form a well developed and consistent
representation of fractions. Several causes may underlie this failure. One important factor is
that while whole numbers are used extensively in modern cultures, fractions with arbitrary de-
nominators are hardly ever used. Measurement contexts bring forth only the decimal fractions,
which extend the base ten system used for whole numbers. Evenhistorically, measurement
needs have been met by using only a subset of the fractions if at all. (The binary fractions used
in the British system are an example). Many cultures avoideddealing with fractions by intro-
ducing new sub-units. In the present day world of commerce, apart of a whole (tax, interest,
discount) is almost always described in percentage. Hence these dominant everyday contexts
do not require fractions with arbitrary denominators as they are learnt in school.

What is the rationale then for teaching and learning fractions in school? The most important
rationale is that fractions give notational and conceptualaccess to dealing with proportionality.
Linear functions are ubiquitous and understanding such functions is an important goal of school
mathematics. In solving problems dealing with proportional relationships expressed by the
linear functiony = kx, the need arises for inverting the relation to obtainx =

y

k
or to obtain

the ratek =
y

x
, which may lead to fractions. Moreover, in such situations one may obtain the

measures forx or y as fractions. Students need to deal with these different possibilities with
understanding. Problems involving the comparison of ratios also implicity use the notion of
proportionality and require similar operations.

Researchers who seek to explain the difficulty of the fraction concept usually adopt one of
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two broad perspectives. The first views children’s familiarity with whole numbers as hamper-
ing the learning of fractions. Procedures taken over from the domain of whole numbers are
applied wrongly to operations with fractions. Even the fraction symbol is interpreted as being
composed of two whole numbers. A more recent variation of this approach is the application of
the conceptual change perspective borrowed from science learning (Vosniadou et al., 2007). In
the conceptual change framework, difficulty in learning a new concept arises from the fact that
it is in conflict with a robust conceptual structure or theorythat is already in place. Children
frequently respond to this conflict by accomodating the new concept, or new data, within the
framework of the old concept, leading in many cases to ‘synthetic’ or ‘hybrid’ conceptions. In-
deed for children who have been learning whole numbers over aperiod of a few years, fractions
present new rules and relationships, which conflict with thewhole number framework. Stafyli-
dou and Vosniadou (2004) present a list of important elaments of this conflict which include
differences in symbolization, ordering, the nature of the unit and the procedures for operating
with fractions.

The conceptual change approach to students’ understandingof fractions is useful in focusing
attention on the precise differences between the whole number and fraction conceptual frame-
works, differences that students fail to internalize even after years of instruction. This approach
has so far framed its research in terms of an integrated, mature concept of rational number that is
close to the formal mathematical concept. Rational numbersprovide the new conceptual frame-
work, which many students fail to absorb to varying degrees.However this approach sidesteps
the findings that have accumulated on how students learn to make sense of fractions.2 Curricu-
lum framers and teachers seek to introduce fractions in waysthat are meaningful even in the
initial encounters. It is through a series of subtle changesin perspective, interpretation and with
the learning of new notation and new ways of using a notation that the student begins to get a
hold on the new concept.

The second approach to understanding the difficulty students have with fractions is more
sensitive to the interpetative changes that students need to make as they begin to work with
fractions. This approach seeks to explore the different ways in which students encounter and
make sense of fractions. One widely accepted theory is the subconstruct theory formulated
by Kieren (1980), which attributes the difficulty children have with learning fractions to the
fact that the fraction concept consists of several subconstructs that are cognitively distinct. The
widely favoured view is that five subconstructs of fractionsare important, of which four are
measure, ratio, quotient and operator. The fifth subconstruct, the one that students usually
encounter first, is the part-whole subconstruct, which is linked to all the other subconstructs
(Behr and Fuson, 1992; Charalambous and Pitta-Pantazi, 2007). Hence although the fraction
symbol denotes one mathematical object, namely, a rationalnumber, the same symbol may be
interpreted in these different ways when we apply the notionto different situations. Kieren
postulated that subconstructs are mental entities that aremore integrative than schemes, and
are hence further up in the theoretical hierarchy in comparison to schemes. One may think of
them as a set of linked external and internal representations along with transformations on the

2See the criticism by Behr et al. (1993) that, from the teaching-learning point of view, the notion of a rational
number as an element of an infinite quotient field is overly simplistic.
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representations. Fundamental to the idea of a subconstructis the integration of representation
with the situations in which the representations are invoked. Empirical studies have found that
the subconstructs may be acquired relatively independently of one another (Kieren, 1993) and
indicate that the extent to which various subconstructs areunderstood may be an outcome of the
instruction students are exposed to (Charalambous and Pitta-Pantazi, 2007).

If subconstructs do play an important role in learning, thenseveral questions arise both from
the viewpoint of the adequacy of the theory and from the viewpoint of curriculum design. First,
are subconstructs peculiar to fractions? Can one sensibly claim for instance that the number con-
cept also consists of different subconstructs? Possible candidates for such subconstructs are the
cardinal, ordinal and labelling uses of number, which lead to distinct structures and properties.
One could also point to the various interpretations of the addition and subtraction operations in
the combine, change and compare situations, which childrenappear to think of in distinct ways.
Analogous examples may be found in other topics as well – arithmetic expressions may signify
both instructions to carry out a process and the result of that process. One might argue of course,
that in comparison to these examples fractions exhibit a more rampant polysemy. Alternatively
the fact that different fraction subconstructs seem difficult to reconcile may indicate that current
conceptualizations of fraction instruction are inadequate precisely because they fail to integrate
the different subconstructs at the conceptual level, unlike in the case of other topic areas, where
the different meanings are better integrated.

From the viewpoint of the curriculum designer, the subconstruct theory raises another set of
questions. Are all subconstructs important, or can children do with only some? This issue has
only recently begun to be investigated systematically (Moseley, 2005). What is the sequence in
which children best learn the different subconstructs? Howdo the different subconstructs be-
come integrated into one unified concept of fraction or rational number? What role do different
representations play in the construction of these concepts?

Traditional curricula begin with applying the part-whole subconstruct in introductory frac-
tion activity through the use of the area model. Even though the use of the fraction notation
to indicate ratios and the division operation is introducedin the traditional approach, it is the
part-whole interpretation that remains dominant throughout the treatment of fractions. The lim-
itations of this approach have been pointed out by several researchers, including the criticism
that it does not induce students to move out of whole number conceptions (See, for example,
Kieren, 1993). Fractions become important not in the context of counting, but in the context
of measuring, while activities centred around the part-whole subconstruct restrict themselves to
counting and comparing the number of parts. The importance of the fraction symbol lies in the
fact that it expresses the flexible construction of units from a given unit. It uses a common no-
tation for the two fundamental processes operating in the activity of measurement: the creation
of sub-units by equal partitioning (described as the splitting scheme by Confrey, 1994), and the
iteration of a unit. In other words, it provides an integrated notation for multiplication and for
division. Vergnaud (cited in Behr et al. 1992) has pointed out the fruitfulness of understanding
the fraction symbol as denoting the concatenation of the multiplication and the division oper-
ations. This idea is embodied in the operator notion of fractions, which has been analysed in
detail by Behr et al. (1993). In our work with middle grade students, we have used the op-
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erator interpretation of fraction as an integrative construct, that brings together and integrates
students’ experiences with other fraction constructs and lays the foundation for the powerful
use of fractions in understanding proportionality.

It is productive to compare the fraction notation with the notation for whole numbers. Like
the latter, the fraction notation also embodies the composition of the number denoted, but unlike
the notation for whole numbers, it embodies a fundamental ambiguity. The fraction notation can
be read as embodying the multiplication operation – a whole number times a unit fraction. The
unit fraction is the new unit, constructed by dividing the base unit: m

n
= m ×

1

n
. The fraction

can also be read as embodying a division operation:m
n

= m ÷ n or m
n

=
1

n
× m, that is,

taking anth part ofm. This ambiguity arises because of the assymetrical interpretation of the
factors in multiplication: 1

n
as unit or as operator. (See Vergnaud (1988) for more detailson

this ambiguity and ensuing difficulties.) An important stepin the understanding of fractions
or rational numbers is the integration of these two interpretations. In a teaching approach that
we have adopted students explicitly study the equivalence of the two interpretations of fraction
by comparing the interpretation of fractions as a measure and as a quotient. An example of
such a task is shown in Figure 1. In the figure, the student compares the quotient and measure
representations for the fraction3

8
. The caption above the left column says ‘each child’s share’

and the one above the right column says ‘(by) unit fraction’.The student has mistakenly drawn
only 7 stick figures instead of 8. (For more details see Naik and Subramaniam, forthcoming.)
In this example, the students reason by translating betweenthe representations. The control
however, is largely semantic, and arises from their understanding of the equal sharing situation.

Figure 1: Combining the measure and quotient interpretation of fraction

In our approach the integration of the operator and ratio subconstructs is achieved by inter-
preting ratio in terms of the operator. Developing the operator construct relies on the fact that
students have an intuitive understanding of the multiplicative relation between whole numbers.
This intuition can be realized with the resources they already have only when one number is a
(small) integral multiple of the other. Moreover, studentsare unaware of how to designate the
inverse multiplication relation (that is, when the target number is a factor of the other). The
fraction notation makes this possible. Figure 2 shows how students make sense of the forward
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and inverse multiplicative relationships. This paves the way for the realization that fractions
allow one to represent the multiplicative relation betweenany two numbers. Students’ progress
in understanding the multiplier/operator notion is guidedby their prior knowledge of whole
numbers. Hence the form of control that is exercised here is primarily structural.

Figure 2: Fraction as operator: multiplicative relation between numbers

We postulate that an implicit grasp of the multiplicative relation underlies the understanding
of ratio. In simple situations students are usually forthcoming in expressing a ratio in terms of
the multiplicative relation. Thus the ratio of 3 to 6 is seen to be the same as ratio of 4 to 8 because
in each pair, the second number is two times (‘double’) the first. Generalizing the multiplicative
relation between any two whole numbers using the fraction notation extends students’ resources
by allowing them to represent the ratio (the multiplicativerelation) between two arbitrary whole
numbers. The application of the multiplier concept (fraction as operator) in understanding ratio
and proportion problems is facilitated in our approach by the use of the double number line (see
Figure 3). The double number line is a graphical representation of the two measure spaces that
are linearly related in a situation where proportionality obtains. It indicates visually the ‘within
measure space’ and the ‘across measure space’ ratios expressed through the operator construct.

Figure 3: Understanding proportion using the double numberline and the operator construct

I have indicated here briefly how opportunities to integratethe different interpretations of
fractions can be provided to students. The semantic controlof students reasoning as they learn
fractions by linking representations of fractions with concrete embodiments and situation is has
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been well explored by earlier researchers. Notably, Streefland has shown how much progress
can be made by keeping equal sharing situations at the heart of fraction learning ( Streefland,
1993). However we need a better grasp of how structural control of the students’ thinking and
learning processes can be facilitated. In this, the intuitive understanding of the multiplicative
relation between whole numbers plays a part. This allows theoperator subconstruct of fractions
to develop as an integrating interpretation, paving the wayfor a structural understanding of the
rational number concept.

The Transition from Arithmetic to Algebra

The difference between arithmetic and algebra has occupieda central place in the research on
algebra learning and teaching. The conceptual change perspective, at least in this case, has
been anticipated and well explored. As researchers came to recognize that the competence
that students have gained in arithmetic in primary school can actually hamper the learning of
algebra, a variety of responses have evolved to address the problem. Some researchers have
sought alternative conceptualizations of algebra. Othershave advocated an early introduction to
algebra by ‘algebrafying’ the elementary arithmetic curriculum, that is, by introducing algebraic
thinking, and sometimes introducing rudimentary algebraic notation in the primary years (see
Lins and Kaput, 2004).

Traditionally the route to algebra has been through arithmetic. Algebra is thought of as
encoding the general rules and properties of arithmetic operations such as the commutative,
associative and distributive properties, and exploiting such encodings to obtain transformation
rules and equivalences of different symbolic expressions.Prior to the transition to algebra, stu-
dents’ knowledge of arithmetic is enriched in the traditional curriculum by having them work
with arithmetic expressions. Primary school arithmetic familiarizes children with the binary op-
erations done singly, but arithmetic expressions encode a sequence of binary operations rather
than a single binary operation. This is new to many students and marks the first point of transi-
tion to algebra. Hence working with arithmetic expressionsin the traditional curriculum helps
familiarize students with the order of operation conventions that ensure that each arithmetic ex-
pression, even when written without brackets, has a unique value. This is expected to prepare
the ground for work with algebraic expressions, which yieldarithmetic expressions when the
variables are substituted and hence take on unique values when the conventions for order prece-
dence are followed. Thus algebraic expressions become representations of functions. Since the
conventions governing algebraic expressions reflect the conventions for precedence of opera-
tions, it is expected that students who understand these conventions will also understand the
structure of an algebraic expression.

However, students do not make the expected smooth transition to algebra and encounter
many hurdles. For example, students are habituated througharithmetic to obtain a ‘closed’
answer or a single number as the result, which leads them to misunderstand notations like3+x

and3x as being equivalent. The arithmetic bias operates in this case by producing a ‘closure’ in
the form of the expression, similar to obtaining a number as the result in arithmetic. A deeper
account of the hurdles that students encounter is provided by researchers who draw on the work
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of Piaget and others on the development of abstract concepts. They argue that expressions such
as3+x have multiple meanings in algebra and it is necessary to treat them in a flexible manner
as both processes and products (Sfard, 1991; Tall et al., 2000). For example,3 + x can both be
understood as a process of adding any number to3 or as standing for the result of that process,
which is the number obtained as the sum. The process-productduality is also found in the
quotient interpretation of fractions:m

n
can denote either the process of dividingm objects into

n equal shares or the result of the process, namely, each share. Students who fail to adopt the
flexible dual view of fractions may have trouble seeing2

3
and 12

18
as ‘being the same’.

Another difficulty caused by arithmetic expressions in relation to algebra learning is that
students fail to perceive the structure of arithmetic expressions. Indeed, they may interpret the
structure variously without even being aware of the requirement that each numerical expression
can have only one value. As one might imagine, this seriouslyhampers understanding sym-
bolic algebra. Part of the reason lies in the fact that students do not appreciate the necessity of
representing a sequence of binary operations. Problems in arithmetic can be solved simply by
actually carrying out the binary operations one by one. Contexts where such representations
are necessary, whether in problem solving or in expressing functions (formulae) or in justifying
and proving (see Bell, 1995) already presume a facility withsymbolic expressions that students
may still need to attain.

In an approach to algebra that we are currently developing for the middle grades, the focus
is on working with symbolic arithmetic to draw out students’intuitions in arithmetic and to
build on them. As I argued in the discussion on whole numbers,the operational composition
is already embodied in the complex place value notation for numbers. In this approach to
algebra, the understanding students already have about theoperational composition of a number
is strengthened and enhanced. Students can generalize and extend the idea of composition and
arrive at different representations for a number. Each representation carries compositional or
relational information about the number. Thus the two expressions 5+7 and 9+3 may denote
the same number, but they express different relational information. Students can appreciate this
and soon develop an interest in generating expressions thatdenote the same number.

A key strategy here is to deflect students away from the goal ofcomputing an expression.
Arithmetic expressions are not to be interpreted as instructions to compute but as reflecting the
operational composition of a number. For this, students need to clearly distinguish the units
in an expression and how each unit contributes to the value ofthe expression. This is the
key idea that underlies what we have described as the ‘terms approach’ to evaluating arithmetic
expressions (Subramaniam and Banerjee, 2004). In the termsapproach, students parse the given
expression into terms and flexibly combine terms rather thanadd and subtract numbers in a
sequence dictated by precedence rules. Each term contributes to the value of an expression:
simple positive terms increase the value, while simple negative terms decrease the value of
the expression, acting in a compensating manner. The rule for precedence of multiplication
is absorbed into the visual concept of a product term, that isdistinguished from the simple
term. Product terms can be combined with simple terms only after they are themselves reduced
to simple terms. Exceptionally they may be combined with other product terms which have
the same factor. This approach was developed using a teaching experiment methodology with
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iterative trials using different groups of students. More details about this approach and the
empirical results obtained may be found in Banerjee (submitted).

The approach also represents an operationalizing of the notion of reification or process-
product duality that characterizes the growth of mathematical knowledge. This is entailed by
the change in perspective from computing an expression by ‘operating’ on the numbers desig-
nated to evaluating the expression by ‘combining’ terms. From the proceptual point of view
(Gray and Tall, 1994), the expression as a whole denotes a sequence of processes and also the
result obtained after applying the processes, which is the computed value of expression. More
importantly, here I wish to point to the proceptual nature ofthe elements of the expression:
each term denotes the result of an operation, and designatesan operator which modifies the
value of the expression. This ‘immanently’ proceptual viewfrees students from rigid compu-
tational rules and allows them to see the elements of an expression in relational terms. This
prepares them for the representation of a function by a symbolic expression, and also opens the
door to understanding transformations of expressions and how transformations affect the value
of an expression. This understanding is fundamental to the simplification procedures and the
manipulation of forms that build facility with symbolic algebra.

To summarize, one of central problems that mathematical pedagogy has to deal with arises
from the fact that symbolic mathematics, while being an important and essential part of mathe-
matics, presents enormous hurdles to students, who fail to engage meaningfully with symbols.
Researchers have sought to overcome this problem by exploring approaches that enable students
to exercise control over symbolic mathematics in deeper ways. Much of this research explores
largely semantic forms of control. Developing forms of structural control can be complemen-
tary to this process. Indeed, as researchers have pointed out (Sfard, 2000) this gains increasing
importance as students grow in their mathematical understanding. In this article, I have at-
tempted to take a longer ranging perspective of elementary mathematics that compares findings
from different topic areas spread across the school years. From such a perspective, forms of
structural control emerge as important. I have also attempted to indicate briefly how forms of
structural control on symbolic mathematics can be providedfor while designing the curriculum
in the areas of fractions and beginning algebra by drawing onstudents’ understanding of whole
numbers.
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