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This paper reports a small part of a design experiment which aimed at enabling Grade 6 
students to make the transition from arithmetic to algebra. The focus on the intervention was 
to develop students’ understanding of symbols and rules of operating on the symbols in the 
context of algebra by building a deep understanding of arithmetic. Further, it aimed at 
developing an appreciation of the use of algebra in rich contexts. In this paper, we discuss two 
of these contexts which are useful for developing two important ideas of mathematics, that of 
generalization and proof. We discuss Grade 6 students’ first attempts to work on these tasks 
and grapple with these key ideas of mathematics. Though we feel that these students had 
sufficiently robust understanding of symbols and syntactic aspects of algebra, it was not 
sufficient to fully understand the demands of the two contexts.  

INTRODUCTION 
The recent years have witnessed a significant rise in interest in students’capacities to 
generalize, reason and argue mathematically, in other words to think mathematically. This has 
led to exploratory studies about students’ abilities to generalise, reason, argue and prove as 
well as develop such capacities among students through teaching interventions. The emphasis 
on generalization and reasoning, recognized as among the most important processes in 
learning mathematics, also distinguishes the recent surge in process-oriented classrooms from 
the traditional product-oriented classrooms. Though both generalization and reasoning have 
assumed an important role in reform-oriented classrooms across the world, and when given 
appropriate opportunities students across elementary and secondary grades also are capable of 
engaging in these processes, the transition to formal proof and proving – the hallmark of 
mathematical knowledge, largely expected in the secondary school, is still to be understood. 
Moreover, the addition of these dimensions in the classroom has changed the nature and 
culture of classrooms, focusing on student participation and production and validation/ 
justification of mathematical ideas in interactions between participants of the classroom.  

Algebra is a domain where both generalization and justifying/ proving play an important role. 
These provide the contexts which lend meaning to the symbols that get introduced in algebra 
and also have been found useful for promoting algebraic thinking. Algebra provides the 
language to succinctly describe the generalization in a pattern and also to justify specific 
number patterns (for e.g. among three consecutive numbers). Given the vast number of 
studies which document students’ inability to understand symbols in algebra and to 
meaningfully use and manipulate them (see Banerjee, 2011 for a review), developing an 
understanding of algebra in rich contexts (like the ones mentioned above) seems to be a 
reasonable option (e.g. Rojano & Sutherland, 1991; van Reeuwijk & Wijers, 1997). Research 
in the past shows that these situations could be challenging (e.g. Stacey, 1989; Reid & 
Knipping, 2010) but creating appropriate classroom cultures which engage children in 
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communication using natural language, signs, gestures, symbols could help them generalize 
and reason with algebraic symbols (e.g. Radford, 2003; Warren & Cooper, 2008; Rivera, 
2010). In this paper, our attempt would be to illustrate Grade 6 students’ emerging 
understanding of generalization and proof/ proving that arose in some particular contexts as 
they participated in a year-long intervention on beginning algebra. We would demonstrate 
how Grade 6 students tried to arrive at generalized rules for a pattern and highlight the 
contributions of various students towards the outcome together with the skills and knowledge 
that they brought to the situation. We would also highlight the difficulties which students face 
as they tried to make a transition from reasoning to proving with algebra.  

METHODOLOGY AND FRAMEWORK OF THE STUDY 
The aspect of the study that is being presented in this paper is part of a larger design 
experiment which consisted of five trials with Grade 6 students over two years, the first two 
being pilot trials. The later three trials formed the main study. The students came from two 
schools (one English medium and one vernacular medium), belonging to low and medium 
socio-economic backgrounds. Students were randomly selected from a list of volunteers after 
their Grade 5 final examination for the first trial in summer but they were subsequently 
invited to attend the latter two trials. The trials were held during the vacation periods of the 
school, during summer and Diwali. They were taught in the same medium of instruction as of 
the school by the research team members. None of the activities/ tasks that would be 
discussed in this paper were familiar to them.  

The teaching intervention in all the trials included two kinds of activities - ‘reasoning about 
expressions’ (which included discussions on possibilities and constraints on operations in the 
contexts of evaluating/ simplifying expressions, the meaning of symbols and comparing and 
judging equality/ equivalence of expressions) and ‘reasoning with expressions’ (dealing with 
activities like representing relationships, pattern generalization, justification and proof). It 
aimed to bridge the gap between arithmetic and algebra by exploiting the structure of 
arithmetic and give meaning to beginning symbolic algebra. It was ensured that reasoning 
formed the core of the classroom culture, whether the tasks were computational tasks or non-
computational. It was also hoped that once students understood algebraic symbols and 
transformations to signify some meaning and having some purpose, students would be able to 
use them in contexts and display meaningful actions on the symbolic representations they 
would create for the situations. Such situations were created in all the trials of the main study.  

In this paper, we would focus on two tasks which were used in the third and final trial. We 
introduced the pattern generalization task (growing patterns of lines or dots or squares) and a 
game called the ‘think-of-a-number’ game (e.g. Think of a number. Multiply it by 2. Add 4. 
Subtract the original number. Subtract 2. Subtract the original number. What is the number 
you get? Do all of you get the same answer? Can you explain why this is happening?). These 
required students to represent the situation, generalize it and also provide some justification or 
proof. Even though these tasks were situated in the numerical world, they are characterized by 
the scope of generalization to a range of similar situations. We would try to understand the 
emergence of the crucial ideas of generalization and proof as they worked on these problems. 
We would also attempt to explore what advantages these students had while working on these 
tasks given their understanding of expressions revealed in the context of ‘reasoning about 
expressions’ (Banerjee & Subramaniam, 2012) and what more is required in order to gain 
sufficient understanding of these situations.  
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Such problems/ tasks were introduced by the teacher as a whole group discussion/ activity 
followed by further working on the same or other similar tasks in pairs or individually. The 
pattern generalization task involved creating a generalized rule for continuing the pattern and 
identifying the equivalence of various rules proposed in the class. The ‘think-of-a-number’ 
game began as a puzzle proposed by the teacher inviting students to solve the mystery but 
subsequently required the students to create their own such puzzles. The purpose of getting 
students to work in pairs was not so much to analyse the usefulness of collaborative learning 
but to create a space where they could share their initial thoughts with their neighbours, given 
the complexity of the tasks. We spent a total of six 45 minute sessions on these two tasks. 
Data was collected for the trials by video-recording the classes, detailed teaching notes and 
reflections or each day, record of every day’s work done by children, pre and post-tests and 
interviews after some duration of the second and the third trial. In this paper, we would use 
parts of this data to show their facility and difficulties with the processes of generalization and 
proving, revealed through the two tasks.  

IDEAS ABOUT GENERALIZATION 
 

 

 

 

 

 

How many matchsticks will be required to make the 4th figure? 
How many matchsticks will be required to make the 34th figure? 
How many matchsticks will be required to make the nth figure? 

Figure 1: Matchstick pattern of growing squares 
After a short warm-up pattern generalization task involving polygons and the number of 
diagonals from one point, the first task in the classroom was to generalize a matchstick pattern 
of growing number of squares (Figure 1). 

Due to their extensive exposure to arithmetic expressions, the first attempt was to write 
arithmetic expressions depicting recursive relations between consecutive figures in order to 
predict the number of matchsticks required to make some number of squares. There was no 
apparent difficulty in generating functional relationships which could help make the 
predictions. The following is a transcript from the first episode of this task from one of the 
classrooms (a similar discussion happened in the other one too).  

Teacher: Think of an effective way of counting the matchsticks. 

Joel: In first one it is 4, in second 3 is more 

Teacher: 3 is more, what should I write? 

Students: +3 

Teacher: 4+3. So how are you saying that? What you said is there is 4 and then 3 has been 
added. Therefore. What about the next one? 
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Students: 4+3+3, 4+6 

Teacher: you can also directly write 4+6. Next? 

Students: 4+3+3+3 

Teacher: What will be the 5th? 

Students: 4+3+3+3+3, 5 times 3 

Teacher: What about the next? 

Students: 4+3+3+3+3+3 or 4+6+9 

Teacher: Can you tell me something easier to write?  

Students: 4+6+9, 4+5×3 

Teacher: Okay. Now if I ask you about 12th figure? 

Students: 4+3+3+ 

Some others: 4+11×3. 

Teacher: Why did you choose this 11? Yes Mahesh. 

Student: Teacher because we are increasing 6. 

Teacher: We are increasing 6. I have not followed. Please explain. 

Mahesh: 5+6=11 

Teacher: 5+6, where did the 6 come from? 

Aashish: If any number is there, we have to minus 1 and multiply by 3.  

Teacher: Okay. This is a reasonably good explanation. If there is any number, you reduce 
it by 1 and multiply by 3. Here you decrease 12 by 1 to get 11 and 
multiply by 3.  

Saurabh: 6 is 6 more than 12. That is why you add 6 to 5.  

The first verbal expression of ‘…in second 3 is more’ was an important articulation which 
was converted by the group as ‘+3’, a symbol which they were quite familiar by now for 
representing change or relationship. The group preferred the expression with recursive 
addition of 3 rather than expressions of the kind ‘4+6+9’, appreciating the possibility of 
generalization of the former. The recursive addition of 3 was converted quickly to a functional 
relationship connecting the number of squares and number of 3’s in an expression. The last 
two interventions by Ashish and Saurabh were the first attempts to verbalize the pattern that 
they were seeing. Saurabh’s rule of ‘adding 6 to 5’ (that is, add 6 more 3’s to the existing 5 
3’s) was a more local rule, being generated on the basis of another expression they had written 
for making six squares: 4+5×3. This helped avoid the ‘linearity error’ many students make, 
which lead them to write the expression 4+10×3 (2 times 5 =10) for 12 squares. Ashish’s 
intervention was more general, he was in fact stating the general rule of finding the number of 
matchsticks for any number of squares. This is the one the class used to find the number of 
matchsticks for 62 squares. In some time, to describe the rule for the nth position or n squares 
in this pattern, a student gave the rule 4+n–1×3. The explanation given was ‘n-1 is 61 
[pointing to the 62nd position] and like that n-1’. Another said ‘whichever number minus 1 and 
in n it is minus 1’. However, this verbalization, although clear in their minds with regard to 
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the sequence of operations, is ambiguously presented in the written expression, which they 
did not realize. 

Subsequently, students across the two classrooms (English and the vernacular medium) 
generated a variety of expressions as rules for the same pattern. We could see two kinds of 
attempts with respect to the creation of the rule: expressions representing counting mechanism 
highlighting the structure of the pattern (e.g. 4+(m-1)×3, 3×m+1, 2×m+(m+1)) and complex 
expressions exemplifying pattern in the numbers (e.g. 4×(m+1)-(m+3), 5×m-(m×2-1) and 
3×(m+1)-2). They faced no difficulty with the process of generalization, the verbalization of a 
rule and converting it into an algebraic expression. They seemed to have grasped some 
important ideas of generalization. They did not approve of expressions which could not 
display the pattern suitably for all situations. They carefully identified the constancies in the 
expressions and pattern in the changes across the expressions leading to the rule. It can be 
argued that the expression is meaningful only when it bears a close resemblance to the 
structure of the pattern and is connected to the process of counting. However, we feel that 
both kinds of generalizations are important and valuable. In this case, students made sense of 
these expressions as representations for the process of counting or as exhibiting relationship 
between the numbers. This kind of ‘playfulness and inventiveness’ with expressions was 
possible due to the nature of understanding of expressions they had developed in the earlier 
part of the intervention. This process was particularly helped by allowing students to verbally 
state the general pattern that they saw in the series of arithmetic expressions. The students 
attempted to understand the symbols and identify appropriate syntax for the algebraic 
expressions which matched the verbal rule they stated. This cannot be considered meaningless 
simply because the resulting expression does not match the visual pattern. This process of 
verbalizing and generalizing in ways so that it has predictive value are generally found 
difficult in the various exploratory studies. 

The think-of-a-number game provided another opportunity for us to evidence students’ ability 
to generalize. When the instruction used in the task was simple like ‘Think of a number. Add 
6. Subtract 2. Subtract the original number. Subtract 3’, students reasoned: ‘50-50=0, 6-5=1’. 
Though the student used a particular number to communicate her thinking, it displayed the 
structure of the argument clearly. This paved the way for using the letter to denote the starting 
number. The representation of the arithmetic or algebraic expression in this context closely 
matched the sequence of instructions thereby making it possible for students to start 
symbolizing the puzzle. A very simple situation created by one student in the class and its 
subsequent solution by another student illustrates the way they were trying to make sense of 
this task and their ability to relate the arithmetic and the algebraic solutions. In response to the 
question ‘Think of a number. Add 2. Subtract 2. Add original number. Subtract original 
number’, a student remarked ‘She told to add 2, then subtract 2. So we will get 0. And again 
add original number and subtract original number, so it becomes 0. x+2-2+x-x = x (+2-2=0, 
+x-x=0)’. The translation of the verbal explanation to the symbolized form is another aspect 
of generalization. Students had developed a strong structure sense for both arithmetic and 
algebraic expressions and used consistent rules for transforming arithmetic or algebraic 
expressions (see Banerjee & Subramanium, 2012 for detailed discussion on this issue). This is 
likely to have helped them in this task as well, where they skillfully analyzed the operations 
and transformations on the initial number, often treating this number differently from the 
other numbers used in the context.  
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IDEAS ABOUT PROOF AND PROVING 
Though students displayed some genuine understanding of generalization, they did not show 
much appreciation of the ideas of proof or proving that naturally arose in these two contexts. 
When asked whether all the rules generated for the square matchstick pattern were equivalent, 
some were not sure as they compared the expressions by focusing on the surface features, like 
comparing 3n+1 with n+n+n+1 and arguing that in the first expression we have 3n whereas in 
the second we have n and +1 is same in both (derived from a strategy of comparing terms that 
was used quite successfully while comparing arithmetic and algebraic expressions without 
computation). Others argued that they must be the same as they are generated from the same 
pattern. A few students thought of substituting numbers in the expressions and check if all the 
expressions led to a common value during the classroom discussion. A large majority of them 
resorted to simplifying the expressions to the simplest form. Even after simplifying all the 
algebraic expressions and arriving at the same result for all, there was at least one student who 
expressed that ‘unless the value of the letter is known, it would not be possible to judge the 
equivalence of the expressions’. This leads to a doubt whether all students were able to see the 
purpose of using the letter or the idea of ‘proof’, a fairly well documented phenomena in the 
studies on proof and proving. In the earlier sessions of the trial, they had demonstrated 
sufficient understanding of equality and equivalence of expressions, which could be arrived at 
by carrying out various kinds of valid transformations on them. However, in this context, they 
did not see that expressions once shown to be equivalent do not need further corroboration 
with numbers and it is general enough to hold for all values of the letter. They also made 
syntactic errors while transforming them.  

Figure 2: A student’s attempt to prove using numbers and letter 

In the ‘think-of-a-number’ game, some students often decided to try various numbers as the 
starting point and arrived at a result and then induced the pattern of relationship between the 
two. This process though useful in figuring out how the two (starting and the ending number) 
were related, did not throw much light on why this was the case. On various occasions of 
individual solving of such tasks given by the teacher or generating such problems on their 
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own in the class, we came across ideas on proof and proving. Some believed that since the 
result holds well for multiple instances, it was sufficient to ‘prove’ the correctness of their 
conclusion (like, the sequence of instruction would lead to the number they started with or a 
constant). Some others, as in the verbal explanation stated above, treated numbers as ‘quasi-
variables’ and manipulated expressions in particular ways to show the generality of the 
conclusion. See Figure 2 for such an attempt, which is incorrect but gives a glimpse of how 
students tried to use arithmetic expressions and algebraic ones to prove the result. The error is 
precisely because of the interference of the ‘starting number’ (2 in this case) with the use of 
letter. There were a few who could systematically symbolize the instruction algebraically and 
through manipulation explain why the conclusion holds true for all numbers. As the problems 
became more complex (posed by the teacher or generated by students), the mental tracking of 
transformations on the original number was harder and errors in representing and 
manipulating were observed.  

Again, like in the case of showing equivalence of algebraic expressions in the pattern 
generalization task, they were not sure if the symbolic expression added any insight into the 
situation. This was further revealed as many of the typical errors students make while 
manipulating symbolic expressions re-emerged, sometimes even leading to meaningless 
manipulation. For instance, when they found that a particular set of instructions on the starting 
number led them back to the starting number and manipulation on a wrong representation led 
them to the value 0, they immediately concluded that x must be 0 as they did not know the 
value of x. They were of course not appreciating the goal or the purpose of the whole task. It 
was very hard for them to resolve the conflict as they did not anticipate what the manipulation 
should lead them to, thereby indicating a lack of its purpose.  

The interviews conducted with seventeen students few months after the end of this trial 
further substantiated these ideas on proof and proving. The interviews explored students’ 
solution to a pattern-generalization task and ‘think-of-a-number’ game, similar to the one used 
in the post-test of this trial. The richness of the classroom discussions were not reflected in the 
individual performance in the post-test or the interviews, with few students being able to 
complete the tasks successfully. The pattern-generalization task required students to 
generalize a pattern and show two rules to be equivalent. Students had variable ability to 
arrive at the generalized rule and only a few could show the equivalence of the different 
algebraic rules through simplification without any support. Besides asking for the utility of 
algebra in the ‘think-of-a-number’ game, the students were asked to represent a set of 
instructions, identify the correctness of an expression, judge equivalence of expressions and 
make a problem for an expression. Even though quite a few students correctly identified a 
valid representation, could make a question for an algebraic expression, could anticipate the 
result of simplification of the expression, they were unsure of the use of algebra for the 
situation. A typical response articulated by one of the students was ‘a number represents a 
general number and if the same operations are carried out on the number, it can be shown 
that everyone would get the same answer’.  

DISCUSSION AND CONCLUSION 
Students displayed sufficient capacity for generalizing in these contexts. This generalization 
was facilitated by their ability to articulate their reasoning in natural language and their prior 
experience of reasoning with such symbols. They had sufficient exposure to the arithmetic 
and algebraic symbols and had been reasoning about validity of syntactic transformations and 
equality and equivalence of expressions. This of course influenced the ways they saw the use 
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of expressions in the contexts we discussed in this paper. They were readily seen to use 
expressions (arithmetic or algebraic) to represent the situations meaningfully. However, there 
were often syntactic errors in the representation which were hard to resolve. Similarly, though 
they were quite comfortable generating a representation in both the contexts, it was not 
obvious to them the purpose of using the letter. In the context of pattern generalization, the 
letter was surely a number and therefore it was more acceptable. However, when the 
discussion moved to showing the equivalence of two or more rules generated for the same 
pattern, it was not clear whether they all appreciated that the expressions must necessarily be 
equivalent or that simplification of expressions is general enough and does not need to be 
followed by substitution of a number. The ‘think-of-a-number’ game provided opportunities 
to the students to engage in representing a numerical situation algebraically. They could make 
sense of the expression but since they could explain the situation using narratives or using 
arithmetic expressions by treating numbers in a ‘quasi-variable’ way, they did not see algebra 
as adding much value.  

Their earlier experience created a predisposition for symbolic representations and thinking 
and reasoning with an expression. However, fewer students could convert this understanding 
to one which could enable them to successfully complete the tasks of reasoning with 
expressions or appreciate the ‘purpose of algebra’. The issue is not simply one of transferring 
the abilities from the syntactic world to the contexts where algebra is to be used as a tool or of 
creating a situation so that the letter gets embedded in the context and thus creating meaning 
for the letter or algebra. Two elements that play an important role in these tasks are (i) the 
culture of generalizing, proving and verifying, with which the students in traditional curricula 
have very little experience and which needs to be developed and (ii) students’ belief about the 
effectiveness of using algebra in these tasks. One can probably explain the re-emergence of 
many syntactic errors and meaningless manipulation on the letter and the expressions as they 
failed to appreciate the purpose of algebra and the goal that they were trying to achieve.  
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