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ABSTRACT

This chapter provides an introduction to the mathematics associated with

combinatorial problems that have their origin in music and prosody, which

were studied by Indian mathematicians over the centuries starting from

around the third century BC. Large parts of this mathematics are accessible

without a knowledge of advanced mathematics, and there are several con-

nections with what is learned in school or in early university education. The

chapter presents expositions of such connections with, for example, binary

arithmetic and Fibonacci numbers. In solving some of the problems, Indian

mathematicians worked implicitly with the idea that all positive integers can

be represented uniquely as sums of specific kinds of numbers such as the

powers of 2, Fibonacci numbers and factorial numbers. These ideas are

interesting, both in themselves and for the connections they make with

aspects of culture, and hold promise for mathematics education and the

popularization of mathematics.

Keywords: binary arithmetic, combinatorial problems, Fibonacci numbers,

Indian mathematics, mathematics and music, mathematics and prosody
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REPRESENTATIONS OF NUMBERS AND THE INDIAN 

MATHEMATICAL TRADITION OF COMBINATORIAL PROBLEMS

The history of Indian mathematics has been an area of exciting new dis-

coveries in recent decades. Fresh insights into the contributions of the

Kerala mathematicians from the fourteenth to the seventeenth centuries

CE are among the better known discoveries. Mathematical work from ear-

lier periods too have been more thoroughly studied and better under-

stood. Plofker (2009) provides a recent overview of the history of Indian

mathematics. Several recent anthologies convey the excitement of current

work in the field (see e.g., Emch, Srinivas, & Sridharan, 2005; Seshadri,

2010).

Our purpose in this chapter is to explore aspects of the history of

Indian mathematics that may be of interest to the mathematics education

community. Specifically we explore the work on combinatorial problems

beginning from around the third century BC and continuing till the four-

teenth century CE. The problems and the mathematical ideas developed

by this tradition need only a level of mathematical knowledge available to

many secondary school students. The ideas have interesting connections

with Indian cultural forms, both living and historical and hence may

appeal to a wider audience than those with a taste for mathematics. The

material in this chapter is largely expository and draws heavily on the

recent historical work and textual interpretations of among others, R.

Sridharan, of whom the first author of this chapter is a collaborator (Srid-

haran, 2005, 2006; Sridharan, Sridharan, & Srinivas, 2010).

The development of numeral notation and forms in India provides a

backdrop for the discussion of the connections of combinatorial ideas

with number representations in this chapter. It is fairly well known that

the decimal numeral system currently used had its origins in India and

was transmitted to the West through contact with Arab culture. A decimal

system of number names with Sanskrit names for the numbers from 1 to

9, and for powers of 10 up to a trillion was already developed in the sec-

ond millennium BC and appears in the vedas, the oldest extant literature

from India (Plofker, 2009). Large numbers were denoted by compound-

ing names for 1 to 9 with names for powers of 10, much like in present

day English. Besides these, once also finds in the vedic literature “con-

crete” number names, which are salient cardinalities (e.g., “moon” = 1,

“eyes” = 2, “sages” = 7 from the well known saptar i* or seven ancient

sages). The earliest inscriptions in which a positional decimal numeral sys-

tem is used, date to the second half of the first millennium CE. However

s
.

*First occurrences of Sanskrit or Tamil words are in italics. Subsequent occurrences are not 

italicized (except for names of texts) to enhance readability.
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much earlier evidence for positional value exists in the form textual refer-

ences. For example, the year in which a work was authored is mentioned

as “Vi u hook-sign moon.” These are concrete number names where

“Vi u” (a leading diety) stands for one, “hook-sign” for nine (from the

shape of the written numeral) and “moon” for one. Thus the number

translates to “191” using decimal positional notation, a year measured in

the aka era, which corresponds to the year 269 or 270 CE (Plofker,

2009). The order is actually right to left, which does not matter here since

“191” is a palindrome. 

It must be noted that there were other numeral systems in use through

the centuries. Some of these were not based on positional value, like the

alphanumeric system used by ryabha a, the author of the foundational

astronomical-mathematical work ryabha !ya written in 499 CE. In this

system, consonants of the Sanskrit alphabet had specific numerical values

depending on their position in the alphabet, while vowels indicated pow-

ers of 10 (Plofker, 2009). For example, the consonant “kh” had a value of

2, while the vowels “i” and “u” had respectively values of 10
2
 and 10

4
.

Thus the syllable “khi” would mean 200, while “khu” would mean 20000.

The syllable “ni” would denote 2000: “n” = 20 and “i” = 10
2
. It was pos-

sible to denote the large numbers that are needed for astronomical calcu-

lations in a compact manner using ryabha a’s notation, but the syllable-

words that were produced were difficult to pronounce. 

A more popular number system was the positional value based ka apa-

y di system in which consonants took numerical values from 0 to 9,

depending on their order in the Sanskrit alphabet. The first ten conso-

nants in the first two rows of consonants in the Sanskrit alphabet (“k” to

“ñ”) denote, in order, the digits “1” to “0”. The next two rows also denote

the same digits. So this system had redundancies—three or four conso-

nants denoted the same digit, and vowels did not have numerical value.

The redundancies allowed flexibility in the choice of a syllable combina-

tion to denote a number—often an actual Sanskrit word could be used to

denote a number. Thus the word “dh!ra” (meaning resolute or coura-

geous) would denote 29, since “dh” denotes the digit “9” and “r” denotes

“2”. (Note that the order is right to left.) Of all these systems, the posi-

tional value based concrete number system described above was the most

widely used in mathematical texts. For more details about the various

number systems, see Plofker (2009).

COMBINATORICS IN MUSIC AND PROSODY

A rich tradition of combinatorial problems associated with the enumera-

tion of symbol strings and mathematical techniques to solve them has
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existed in Indian mathematics for over two millennia. These problems

have their origin not in a branch of science or technology, but in the

arts—in prosody and in music. However, the mathematical ideas were

pursued for their own sake as a distinct “mathematical” tradition, beyond

the practical needs in poetry or music. While Sanskrit poetry largely

belongs to the past or is pursued by specialized groups, Indian classical

music is a living and vibrant aspect of contemporary Indian culture. (It

must be noted that prosody in modern Indian languages is heavily influ-

enced by Sanskrit prosody.) A penchant for classification and systematic

organization is reflected in the classical musical traditions of India. These

typically take the form of specifying an underlying basic structure or

alphabet and enumerating melodic or rhythmic possibilities emerging

from the basic structure. We will first look at this aspect of classical music,

both with regard to melody and rhythm and then provide a brief intro-

duction to these aspects in Sanskrit prosody. This introduction to cultural

aspects provides a background for better appreciation of the mathemati-

cal discussion that follows. However, the mathematical sections can be

understood independent of this background.

Combinatorics in Karn ak music. The two great streams of classical

music in contemporary India are Karn ak and Hindust ni music. They

share many characteristics and similarities, although the musical compo-

sitions, musicians and serious audiences are largely separate groups. We

give a brief introduction to the Karn ak musical tradition, whose geo-

graphical center is in South India, to highlight the role of combinatorial

structure in its melodic and rhythmic forms. 

The melodic forms that provide the basis for both Karn ak and Hin-

dust ni music are called r gas, which are roughly analogous to scales in

Western music. The basic specification of a r ga is in terms of the ascend-

ing and descending sequence of notes (svaras) in the scale. The notes are

expressed using the seven “solfege” syllables of Indian classical music,

which are pronounced as “Sa, Re, Ga, Ma, Pa, Dha, Ni”, and commonly

notated in writing using the first letter.  These are short forms for the

names of the notes: a ja, Ri aba, G ndh ra, Madhyama, Pancama, Dhai-

vata and Ni ada. The tonic Sa (or a ja) is fixed arbitrarily, and the

remaining notes have a specific tonal relation to the tonic. The notes have

higher and lower tonal values, which are shown in Table 79.1. However,

the seven notes correspond only to 12 distinct tone positions because of

overlaps. There are four pairs of duplicate names for the same position:

R2=G1, R3=G2, D2=N1, D3=N2. It must be noted however that in Kar-

n ak music as it is actually performed, the tonal values of the svaras are

flexible (Krishnaswamy, 2003).
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The basic r gas of Karn ak music, called the “me akarta” r gas, always

have the seven notes in the correct order in the ascending and descending

sequences. The me akarta r gas are the “mother” r gas, from which other

r gas are derived (“born”) by omitting some notes, varying the sequence of

the notes, or by interpolating notes from other r gas. By taking different

combinations of the distinct tonal values of the seven notes, a total of 72

me akarta r gas are obtained in the following manner: 6 (number of pos-

sibilities for R-G combinations) × 6 (number of possibilities for D-N com-

binations) × 2 (number of possibilities for M) = 72. It is interesting to note

that the enumeration of the me akarta r gas has a fixed order determined

by the sequence in which the tonal values are varied. For example, the well

known r ga “ ankarabharanam”, which is analogous to the major scale in

Western music, is number 29 in the me akarta sequence and has the fol-

lowing notes: S,  R2, G3, M1, P, D2, N3. 

The enumeration of the me akarta combinations provides a conve-

nient organization of the alphabet and vocabulary of Karn ak music. A

useful mnemonic system exists to identify the sequence number of a

me akarta r ga. The r gas have formal names (sometimes different from

the common names) where the first two syllables in the name gives its

number in the ka apay di numeral system, mentioned in the previous

section. For example the formal name using the ka apay di for the

ankarabharanam r ga is “Dh!ra ankarabharanam”, where “dh!ra” in

the ka apay di system denotes 29. However, it must be said that the com-

plete list and exact order of the me akarta r gas are rarely emphasized in

musical training, and are present largely as background reference. 

Rhythm and numbers. The rhythmic basis (t la) of Karn ak music is

similarly provided by an alphabet consisting of finger tapping, and hand

clapping and waving gestures. A vocalist almost always keeps rhythm

using these gestures even while performing. In the most familiar t la sys-

tem of Karn ak music, there are seven basic combinations of these ges-

tures. These coupled with five forms of the tapping gesture gives a system

of 35 t las, analogous to the system of the me akarta r gas. However,

unlike the me akarta r gas, this system has little correspondence with the

actual rhythmic structure used in most compositions. Only 3 of the 35

Table 79.1. Notes (Svaras) and

Tonal Values ( rutis) in Karn ak Music

Note Tonal Values

Sa (tonic) & Pa (fifth) Fixed

Ma (fourth) Higher, lower (M1, M2)

Re (second), Ga (third), Dha (sixth)

& Ni (seventh)

Higher, middle, lower (R1, R2, R3, G1, G2, G3, 

D1, D2, D3, N1, N2, N3)
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t las are commonly used, and two other commonly used t las do not find

a place in the table of the 35 t las.

The striking beauty and complexity of rhythm in Indian classical music

derives from exploiting combinatorial possibilities in rhythm in another

sense. The player of a percussion instrument like the tabla in Hindust ni

music and the m da ga  in Karn ak music acquires, over time, a large

stock of rhythmic phrases, which can be combined in creative ways to fit

into the structure of a t la. A striking aspect of both Hindust ni and Kar-

n ak music is that complex rhythm patterns are both spoken and played

on the instrument. The spoken form, called “solka u” (literally “bundle of

words”) in Karn ak music consists of sets of syllables, each of which cor-

responds to and has a sound similar to a stroke played on the drum. Thus

one may find a complex and intricate rhythm piece, several minutes long,

first verbally recited in full, and then played exactly on a tabla or

m da ga? Even when a percussionist trains, both forms are learned:

“Throughout my training, I learned literally everything in two forms, spo-

ken and played” (Nelson, 2008, p. 3).

The rhythm player in Indian classical music plays both solo and accom-

panies a vocalist or instrumentalist. It is in solo performance (often fitted

into a vocal or instrumental concert) that the percussionist displays his

(rarely, her) full repertoire and skill. Rhythm pieces are built up from

complex phrases and sentences, which in turn are built up from a set of

basic phrases and the use of rests or pauses. The basic rhythm phrases are

easily recognizable to most people familiar with Indian music. For exam-

ple, common four syllable phrases in Karn ak music are “ta ka di mi”

and “ta ka jo u”; a five syllable phrase might be “ta di ki a tom”; a seven

syllable phrase might be built as a combination of four and three—“ta ka

di mi ta ki a” or as a combination of two and five—“ta ka ta di ki a tom”. 

The t la structure provides the basic framework in which phrases are

set and played. For example, the most commonly used t la, the di t la,

consists of eight beats per cycle. Each beat is typically split into pulses,

which may follow binary splits—2, 4 or 8 syllables per beat, or may follow

splits based on three—3, 6, 12 syllables per beat. The percussionist

designs a piece stringing together stock phrases and rests to cover several

cycles of the t la, creating contrasts, tensions and resolutions. The player

often improvises on the fly while playing out a designed piece. The design

and improvisation are called ka akku (literally “calculation”). Since the

pulses, beats and cycles of the t la must synchronize at crucial points dur-

ing a piece, calculation and arithmetic are fundamental to the percussion-

ists design and performance. Examples of simple and complex rhythm

pieces for solo playing can be found in Nelson’s Solka u Manual (2008)

and also in the solka u recordings available on the web. 
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The classical dance traditions in India, which are also a live and vibrant

aspect of the culture, share the t la system and structure of percussion

music. The syllables and spoken phrases are also a basic part of classical

dance. Rhythmic compositions are often spoken out, much like in percus-

sion music, before being performed as dance. The syllables used are similar

with slight variations. Besides the classical traditions of music and dance,

there are many vibrant traditions of folk music and dance spread across dif-

ferent regions in India. There is no doubt that the classical and the folk tra-

ditions influenced each other over the centuries. Hence it is possible that

some of the aspects discussed above have corresponding features in the

folk traditions. It is more than likely that research on these aspects will

reveal interesting connections with numbers and mathematics. 

Sanskrit prosody. The oldest extant text in Sanskrit is the g Veda

from the second millennium BC. The four vedas, of which the g Veda is

the oldest, are composed in specific metrical forms and have been pre-

served largely through an oral tradition centered around sacred ritual.

The earliest authoritative discussion of these metrical forms is the work

on prosody by Pi gala from the mid-third century BC (Sridharan, 2005).

The vedic metrical forms are classified on the basis of a count of the num-

ber of syllables. One of the most widely used metrical forms from the later

vedic to classical periods, is the anu ubh, a verse composed in four lines

(p das), each of which contains eight syllables. For example, the opening

lines in anu ubh verse of the Bhagavad Gita are

g g g g l g  g  g

dharmakshetre kurukshetre 

  l l g g l g l g

samaveta yuyutsavah

In the lines quoted above, each syllable is marked following the rules of

Sanskrit prosody with a “l” or a “g”, which corresponds to a light or a

heavy syllable (l = laghu – literally “light” meaning short, g = guru – liter-

ally “heavy” meaning long). All Sanskrit poetry has the structure of the

light and heavy syllables. Since there are no accents in the Sanskrit lan-

guage, the meter is determined by the structure of the light and heavy syl-

lables. The anu ubh form has the number of syllables in a p da fixed at

eight, but the number of time units or “morae” is not fixed. Hence the

duration taken to speak different lines of the anu ubh stanza may be dif-

ferent. Many of the classical metrical forms have a fixed number of morae

instead of fixed syllabic length, where the light syllables have a value of

one mora and the heavy syllables a value of two morae.

A basic question that arises with regard to a metrical form is how many

different possibilities there are of a given form. How many different com-
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binations of laghu and guru syllables are possible when the form has a

fixed syllabic length of n syllables? It is easy to see that this is 2
n
 since

there are two possibilities (l and g) for each syllable. Similarly one can ask

how many possibilities exist if the line has a fixed moraic length. As far as

is known, the first text to deal with such problems is possibly Pi gala’s

Chanda -s tra, which deals with enumerating metrical forms of a given

syllabic length. Pi gala’s date is uncertain but it is possible that he lived

around the time of P ini in the third century BC. There was a connected

(if not continuous) tradition of mathematical work on the problems

related to prosody and music, that reached a mature form in the work of

N r ya a Pa di a in the fourteenth century CE. 

There are several aspects of this tradition that are of potential interest to

the mathematics education community. The first is that the mathematics

associated with these combinatorial enumeration problems is interesting

even from a contemporary perspective, and hence unexpectedly deep. At

the same time, large parts of it are accessible without a knowledge of

advanced mathematics, and there are several connections with what is

learned in school or in early university education. The second is that num-

bers in the context of these problems primarily represent not quantity but

serial (ordinal) position. That the mathematics associated with such repre-

sentations can be interesting is a fresh and different perspective that may

enrich students’ experience of numbers. Finally, the methods used to solve

these problems rely on uniquely representing positive integers in a variety

of ways, which are vast and interesting extensions of the familiar represen-

tations of numbers in base ten or other bases. In the subsequent sections,

we explore the mathematical aspects of this tradition. 

THE FOUR PROBLEMS RELATED TO 

COMBINATORICS OF METRICAL FORMS

One of the basic questions that arise in the context of a poetic or musical

form is what possibilities there are of a given type. Consider a syllable

string consisting of exactly three syllables, each of which may be light or

heavy. What are the syllable forms that are possible? This is the first prob-

lem discussed by Pi gala. Pi gala arrives at the fact that there are 2
n
 pos-

sibilities for a string of length n, by first enumerating the forms in a

systematic manner. The systematic enumeration of forms is called “pras-

t ra”. Pi gala discusses six problems associated with such forms, of which

we focus on the following four problems in this chapter.

1. Prast ra: What are the combinations of light and heavy syllables

that are possible for a given length of syllables? How do we enu-
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merate all possibilities in order? What is the rule that allows one to

carry out this enumeration?

2. Sa khy : How many combinations are possible for a given syllabic

length?

3. Uddi a: Given a string in the enumeration, how can one obtain

the exact number of this string in the enumeration sequence?

4. Na a (converse of Uddi a): Given a number in the enumeration

sequence, how can one obtain the string corresponding to this

number?

We also find in Pi gala a treatment of the Lagakriya problem, that is, to

find the number of metres of a given length with a specified number of

gurus (or equivalently, laghus). This problem, which we shall not discuss

in this chapter, gives rise to the construction of what is now known as the

Pascal’s triangle (Sridharan, 2005). 

First, we discuss the problem of enumeration or generating the pras-

t ra for syllable strings of length n. To simplify the exposition we use the

letters “a” and “b” to stand for heavy (g) and light (l) syllables respectively.

Also, we have adopted a left to right convention because of the familiarity

of dictionary order, which is the reverse of the convention adopted by

Pi gala. Table 79.2 gives the complete set of two, three and four letter

“words” made from the letters “a” and “b”. Notice that the lists are in dic-

tionary order.

We see that each prast ra or enumeration can be obtained from the

previous one by a recursive rule. To get the list of two letter words, we first

prefix “a” to all the one letter words to get half of the two letter words,

then prefix “b” and get the remaining half. Similarly to get the list of

three letter words, we prefix “a” to the two letter words to obtain four of

the three letter words, and prefix “b” to obtain the remaining four. The

recursive rule actually follows from the fact that the order of enumeration

is exactly the dictionary order. The rule allows us to generate the entire

list from the previous one. However, it is not local enough to allow us,

given a line in a particular prast ra, to generate the next line. For exam-

ple, one may ask, which string comes just after “bab” in the prast ra of
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One Letter Words Two Letter Words Three Letter Words
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aab
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three letter words? Pi gala, as interpreted by later commentators, gives a

rule to solve this problem, which amounts to the following. Going from

right to left, change the first “a” that you encounter to a “b”, replace all

the letters to its right with a string of “a”s, and leave the rest of the string

unchanged. The rule gives “bba” as the string immediately following

“bab.” It can be checked if this rule applies to all the lines in the prast ras

in Table 79.2. (Note the similarity with the procedure for adding one

when the numbers are expressed in the binary system with “a” standing

for 0 and “b” for 1.) 

We can see that the length of each prast ra is double that of the previ-

ous one, arriving at the fact that the length of a prast ra for a string of n

syllables is 2
n
. This is the sa khy  problem. We consider next the problem

of uddi a by considering the following example: what is the exact posi-

tion of the string “bba” in the prast ra for three letter words? The follow-

ing line of reasoning allows us to construct a rule to solve this problem.

First, we assign numbers in the sequence starting from “0” instead of

“1”. Thus “aaa” occupies the zeroth position in the sequence of three let-

ter words.

Since the first letter of the word bba is b, it cannot occur in the first four

words of the prast ra. Its position within the last four is exactly the same

as the position of ba in the prast ra for two letter words. In other words,

the position of bba is 4+x, where x is the position of ba in the two letter

sequence. This gives us a recursive rule, since the position of ba in the two

letter sequence is 2+y, where y is the position of a in the one letter

sequence, which is in fact zero. Thus we arrive at the position of bba as

4+2+0=6. By substituting “1” for “b” and “0” for “a”, we realize that

“bba” is actually the binary representation of the number 6: “110”, and 6

can be obtained by adding the powers of 2 with the digits as coefficients:

1×2
2
 + 1×2

1
 + 0×2

0
. If we wish to enumerate the sequence in the natu-

ral manner from 1 to 8, then we need to increment this number by one.

The position of bba in the sequence is then 7.

The problem of na a, which is the converse of the uddi a problem, is

to obtain the string from the number that gives its position in the

sequence, given the total number of syllables. The rule can be explained by

taking the same example as above, and asking what is the string in the 7th

position (using the natural numbering from 1 to 8) in the prast ra of

three letter words? We arrive at this by the following rule: if the number is

odd, add 1 and halve the number, write “a”. If the number is even, halve

the number and write “b”. For the next step write the letter to the left of

the previously obtained letters. So for the first step, we add 7+1=8, halve

8 to obtain 4, and write “a”. For the next step, 4 is even, so we halve 4 to

get 2, and write “b” to the left of “a”. Next, since 2 is even, we halve it to

obtain 1 and write “b” to the left. Since we have obtained three letters we
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stop. If the string length is more than three, we continue the process till

the correct number of syllables are obtained. (Note that once we obtain

“1”, the syllables for all the subsequent steps will be “a”s.) Reading the let-

ters obtained, we get “bba”. 

We can also apply this rule to a number larger than 8, say, 9. Since 9 is

odd, add 1, halve 10 to obtain 5 and write “a”. In the next step, since 5 is

odd, add 1 and halve to obtain 3, write “a” to the left. In the next step,

add 1 and halve to obtain 2, write “a” to the left. In the next step, halve to

obtain 1 and write “b” to the left . In this way, we obtain the string “baaa”

as the 9th in the prast ra for four letter words. Note that in every case, we

can also obtain the string by decrementing the number by 1, writing its

binary representation, and substituting “a” for “0” and “b” for “1”.

How does the procedure described above for solving the na a proce-

dure work? We can understand this by considering another way to obtain

the prast ra for three letter words from that of the two letter words, which

is the following. Take the first word in the two letter prast ra, namely,

“aa”. We alternately append an “a” and a “b” to the right to get the first

two words of the three letter prast ra. That is, we get “aaa” and “aab”.

Similarly to get the next two words we alternately append an “a” and a “b”

to the right of the second word in the two letter prast ra, namely “ab”.

Thus we get “aba” and “abb”. We can verify that these four words are the

first four words in the three letter sequence. A little thought reveals that

this is just another way of preserving the dictionary order as one moves

from two to three letters. In general, we can get the k+1 letter sequence

from the k letter sequence, by taking in order each row in the k letter

sequence and generating two rows for the k+1 letter sequence by append-

ing first an “a” and then a “b” to the right. 

Hence from each word in the k letter sequence, we get two words in the

k+1 letter sequence. More precisely, from the n
th
 word in the k letter

sequence, we get the (2n–1)
th
 word – which always ends in an “a” – and

the (2n)
th
 word—which always ends with a “b”—in the k+1 letter

sequence. 

Let us now try to understand the na a procedure for three letter

words. We know that if the row number is odd, it will be of the form 2n-1,

and the string corresponding to this row number will always end with an

“a”. Now we add one and divide by 2, which gives us n. By recursion, the

next step is to find the string corresponding to the row number n, in the

prast ra for two letter words. If the original row number is even, it is of

the form 2n, and the string corresponding to this row number will always

end with an “b”. Now we divide by 2, which gives us n. By recursion, the

next step is to find the string corresponding to the row number n, in the

prast ra for two letter words. 
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From the solutions to the uddi a and na a problems, we can set up a

one to one correspondence between numbers and strings, which Indian

mathematicians were clearly aware of. From the recognition of such corre-

spondence, it is a major leap to ask the question in what sense each word

in the prast ra of three letter words in Table 79.2 represents the numbers

1 to 8. The answer clearly is that the words are just binary representations

of numbers (0 to 7 in the standard binary representation instead of 1 to

8). It is not clear if Pi gala or other mathematicians actually saw the

strings as we see them now, that is, as representations for numbers. How-

ever, one wonders what really lay behind the interest in the uddi a and

na a problems, which do not have any apparent practical significance. 

To summarize, we note that Pi gala provides rules for (i) obtaining the

prast ra for syllabic meters, that is, meters of a fixed syllabic length in

terms of strings of a binary alphabet (ii) obtaining the total number of

such strings (meters) (iii) obtaining the sequence number of a given string

and (iv) obtaining the string from its number in the sequence. A rule that

generates a unique sequence of strings (prast ra) allows one to formulate

the uddi a and na a problems. The rules obtained as solutions to the

problems of uddi a and na a set up a one-to-one correspondence

between strings and numbers, allowing the possibility of interpreting the

strings as representations of numbers. In the next section, we consider

these four problems in the context of a different type of verse—verses

with fixed moraic length. 

M tr v ttas and Fibonacci Numbers

The metrical forms that we considered in the previous sections were

those with fixed syllabic length, where the syllables could be either light

or heavy. In this section we consider metrical forms called m tr v ttas,

where the number of morae, or time units (m tr s) is fixed. Here too, syl-

lables may be light (l) or heavy (g), with l having a value of one time unit

and g a value of two time units. Thus a meter of the form llg would be 4

units long; so would a meter of the form gg or llll. The four problems dis-

cussed in the previous section (prast ra, sa khy , uddi a and na a) can

be posed with regard to the m tr v ttas. The solutions to these problems

for the m tr v ttas are found in the work of Indian mathematicians

beginning with Virah ka in the seventh century CE. Table 79.3 presents

the prast ras for m tr v ttas of lengths 1 to 6.

From Table 79.3, we can see how a recursive rule allows us to generate

the prast ra for a given length from the previous two prast ras. For exam-

ple, to generate the prast ra of length 4, append a “g” at the end of each

string in the prast ra of length 2, and an “l” at the end of each string in
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the prast ra of length 3. Thus the number of strings in the prast ra of

length 4 is the number of strings in the prast ra of length 3 plus the num-

ber of strings in the prast ra of length 2. Using the notation S
n
 for the

number of strings in the prast ra of length n, we can write

S
4
 = S

3
 + S

2
  

Generalizing, we have, S
n
 = S

n-1
 + S

n-2
 

This is exactly the recursive relation for the so-called Fibonacci num-

bers. Virah ka’s text may well be the first to write down the recurrence

relation for the Fibonacci numbers, although it may have been known ear-

lier. The recurrence relation gives the solution to the sa khy  problem of

finding the number of strings in the prast ra of length n. The discussion

of the mathematics associated with such prast ras was a continuing tradi-

tion. Later mathematicians, to name a few, such as Hal yudha, Ked rab-

ha a and Hemacandra, discussed these problems. Like in the case of the

var a prast ras, the solutions to the problems of Uddishta and na a, are

also discussed for the m tr v ttas. The mathematical rationale underly-

ing the solutions is the fact that any positive integer is either a Fibonacci

number or can be expressed uniquely as a sum of non-consecutive Fibo-

nacci numbers (Sridharan, 2006). This can be easily checked by the fol-

lowing argument. Take any positive integer N
0
. If N

0
 is a Fibonacci

number, we stop since the unique sum is the number itself. If N
0
 is not a

Fibonacci number, then there is a largest Fibonacci number S
n
 such that

S
n
 <  N

0
. Now consider the number N

1
 = N

0
 – S

n
. Since S

n+1
 > N

0
, we

have S
n
 + S

n-1
 > N

0
 or S

n-1
 > N

1
. We repeat the process for N

1
. The con-

struction ensures that the process will yield a unique S
n
 at each step and

will terminate since the sequence is strictly decreasing. The number N
0
 is

the sum of all the Fibonacci numbers obtained in this manner.  The pro-

cess also ensures that we do not obtain consecutive Fibonacci numbers at
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Table 79.3. Prast ras for M tr v ttas of Different Moraic Lengths

Total Length 

= 1

Total Length 

= 2

Total Length 

= 3

Total Length 

= 4

Total Length 

= 5

Total Length

= 6

l g

ll

lg

gl

lll

gg

llg

lgl

gll

llll

lgg

glg

lllg

ggl

llgl

lgll

glll

lllll

ggg

llgg

lglg

gllg

llllg

lggl

glgl

lllgl

ggll

llgll

lglll

gllll

llllll

a a a r
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any stage. Thus every positive integer can be expressed uniquely as a sum

of non-consecutive Fibonacci numbers. 

The na a problem can now be solved using a simple algorithm. Sup-

pose we want to find the string corresponding to the sequence number 7

in the prast ra for m tr  length of six (see Table 79.3). We note that the

prast ra for a m tr  length of six units has 13 strings. We first subtract 7

from 13, which is the total number of strings. The result 6, is to be

expressed as a sum of Fibonacci numbers, which we obtain as 5 + 1. Now

we write down all the Fibonacci numbers from 1 to 13 and write down an

“l” or a “g” below each of them using the following rule. For all Fibonacci

numbers that appear in the expression, we write down a “g” below this

number and skip the next Fibonacci number (put a “dash” below it).

Below all the remaining Fibonacci numbers write down an “l”. So for

6=5+1, we write a “g” below 1 and put a dash below 2. We also write a “g”

below 5 and put a dash below 8. We write l below the remaining Fibonacci

numbers. As seen below, we obtain the string as: glgl. 

We verify from Table 79.3 that this is the seventh string in the prast ra

for 6 m tr s. We consider one more example: what is the string that is

number 4 in the prast ra for 6 m tr s? First we subtract 4 from 13, this

gives 9. Next we express 9 as a sum of Fibonacci numbers. We obtain 9 =

8 + 1. Now we apply the rule and write “l” and “g” below each of the Fibo-

nacci numbers from 1 to 13 in the following manner:

We obtain the string “gllg” as the fourth string in the prast ra, which

can be verified from Table 79.3. We leave it to the reader to verify the

algorithm in other cases. As can be seen, the algorithm depends on the

fact that each number can be expressed as a sum of Fibonacci numbers

uniquely, where there are no consecutive Fibonacci numbers. The uddi a

problem needs one to proceed in the converse direction. The reader is

refered to the article by Sridharan (2006) for an exposition of the uddi a

rule.

 It is well known that Fibonacci numbers occur widely in many natural

contexts. The m tr  prast ra provides a context for grasping the recur-

rence relation among Fibonacci numbers that is accessible. The idea that

Fibonacci numbers form a “base” in which all positive integers can be

1 2 3 5 8 13

g − l g − l

1 2 3 5 8 13

g − l l g −
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expressed may be a surprising and interesting fact for many students.

One can use a string of zeros and ones to represent a number in this

“base”, where the position of the ones indicate the Fibonacci numbers

which appear in the sum. There will, of course, be no consecutive ones in

this number representation. 

EXTENSIONS AND OTHER PRAST RAS 

For the two prast ras discussed earlier (Tables 79.2 and 79.3), we write

down the recursive relation and note the similarity in the two relations.

S
n
  = S

n-1
 + S

n-1
  = 2 × S

n-1
 (var a prast ras, Table 79.1)

S
n
  = S

n-1
 + S

n-2
 (m tr  prast ras, Table 79.2)

The recursive relations suggest different kinds of extensions. One pos-

sible extension is of the form

S
n
  = S

n-1
 + S

n-1
 + S

n-1
  = 3 × S

n-1
 

This gives rise to the ternary sequence or powers of 3: 3
0
, 3

1
, 3

2
... One

can obtain unique representations of positive integers using powers of

three, which would correspond to the canonical base 3 representation.

Such prast ras are discussed in the work of N r ya a Pa di a in the

fourteenth century. In fact, N r ya a Pa di a discussed such relations in

their general form (i.e., corresponding to base n representation) (Singh,

2001). However, we do not discuss these any further in this chapter. 

An extension of the recursive relation for m tr  prast ras, that is, the

Fibonacci relation, could be

S
n
  = S

n-1
 +  S

n-2
 + S

n-3
 

The numbers obtained through this recursive relation and the associ-

ated mathematics were again discussed by N r ya a Pa di a. Here too,

he analysed the most general form of this relation (S
n
 = S

n-1
 +  S

n-2
 + ...

+ S
n-q
), where q is an arbitrary number less than n. Oddly enough,

another recurrence relation was analysed by the musicologist r gadeva

before N r ya a Pa di a, who studied the problem for its connection not

to prosody, but to rhythm or t la patterns. In prosody, we considered time

units with values of 1 and 2, the laghu and the guru respectively. In the

context of t la patterns, r gadeva considers four time units: druta,

laghu, guru and pluta. The druta is half the duration of a laghu and a

pluta is thrice the duration of a laghu. Re-adjusting to whole number val-
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ues, we get the following values for the four units: druta – 1, laghu – 2,

guru – 4, and pluta – 6. The question that may be asked is what combina-

tions are possible for a sequence of units that has a total duration of say,

seven time units. We note that the complete list of such combinations can

be derived in the following manner:

• Append a pluta (P) at the end of all strings of duration 1 unit.

• Append a guru (G) at the end of all strings of duration 3 units

• Append a laghu (L) at the end of all strings of duration 5 units

• Append a druta (D) at the end of all strings of duration 6 units

The t la sequences obtained by applying the algorithm are shown in

Table 79.4. The recursive relation for the prast ra of 7 units can be writ-

ten therefore as S
7
 = S

6
 +  S

5
 + S

3
 + S

1. 
Generalizing, we get 

S
n
 = S

n-1
 +  S

n-2
 + S

n-4
 + S

n-6

The numbers S
n
 obtained using this recursive relation have been called

r gadeva numbers in analogy with the Fibonacci numbers (Sridharan,

Sridharan & Srinivas, 2010). The above recursive relation allows one to

solve the sa khy  problem, namely, to find the number of strings for a

given total duration. r gadeva also provides solutions to the na a and

uddi a problems. As one may guess, these depend on the fact that every

positive integer can be uniquely expressed as a sum of r gadeva num-

bers. We do not discuss the mathematical aspects of the r gadeva num-

ber representation in this chapter and the interested reader is referred to

Sridharan, Sridharan and Srinivas (2010). As mentioned, N r ya a

Pa di a in his Ga itakaumud  of 1356 CE discusses general recurrence

relations of this from a purely mathematical point of view unconnected to

applications in prosody or music. N r ya a Pa di a’s work brings this

tradition to its culmination. 
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Table 79.4. T la Combinations of a Total Duration of 7 Units

1 DP 

2 DLG 

3 LDG 

4 DDDG 

5 DGL 

6 DLLL 

7 LDLL 

8 DDDLL 

9 GDL 

10 LLDL 

11 DDLDL 

12 DLDDL 

13 LDDDL 

14 DDDDDL 

15 PD 

16 LGD 

17 DDGD 

18 GLD 

19 LLLD 

20 DDLLD 

21 DLDLD 

22 LDDLD 

23 DDDDLD 

24 DGDD 

25 DLLDD 

26 LDLDD 

27 DDDLDD 

28 GDDD 

29 LLDDD 

30 DDLDDD 

31 DLDDDD 

32 LDDDDD 

33 DDDDDDD 

a
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The prast ras discussed by r gadeva which are related to rhythm

forms are called t la prast ras. r gadeva also considers t na prast ras,

or combinations of musical notes. An example of t na prast ras consid-

ered by r gadeva is the enumeration of all phrases containing the svaras

S, R, G, M (the first four notes of the seven-note musical scale of Indian

classical music discussed earlier), where each svara occurs only once.

r gadeva describes a rule for constructing the rows of the prast ra, the

number of rows being given by 4 factorial (4!). The prast ra is shown in

Table 79.5. 

r gadeva discusses the sa khy , na a and uddi a problems for the

t na prast ras. The solution to the latter two problems are based on fact

that any positive integer m less than or equal to n! can be uniquely repre-

sented as follows:

  m = d
0
0! + d

1
1! + d

2
2! + ... + d

n-1
(n-1)! 

Where d
i
 are integers such that d

0
 = 1 and each d

i
 lies between 0 and i

both inclusive. This is a variant of the general form for the factorial repre-

sentation of integers (Sridharan, Sridharan, & Srinivas, 2010). 

CONCLUDING REMARKS

In the preceding sections, we have discussed the generation of string

sequences or prast ras in the context of prosody and music. We consid-

ered four kinds of prast ras. Two of these were discussed in greater detail:

the varna prast ras, which are the combinations for verses having a fixed

length of syllables, and the m tr  prast ras, which are the combinations

where the moraic length is fixed. Two more prast ras were discussed

briefly, those associated with rhythm forms (t la prast ras) and those

associated with combinations of notes (t na prast ras). For each of these

prast ras, four problems can be considered: 

• Prast ra: the rule for generating the prast ra itself,
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Table 79.5. T na Prast ra for the First Four Notes

1.  S R G M 

2.  R S G M 

3.  S G R M 

4.  G S R M 

5.  R G S M 

6.  G R S M 

7.  S R M G 

8.  R S M G 

9.  S M R G 

10.  M S R G 

11.  R M S G 

12.  M R S G 

13.  S G M R 

14.  G S M R 

15.  S M G R 

16.  M S G R 

17.  G M S R 

18.  M G S R 

19.  R G M S 

20.  G R M S 

21.  R M G S 

22.  M R G S 

23.  G M R S 

24.  M G R S 

a a
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• Sa khy : the total number of combinations or strings in the pras-

t ra

• Uddi a: obtaining the sequence number of a given string 

• Na a: recovering the string when the sequence number is given. 

As discussed, the last two problems are of particular importance, since

their solution involves decomposing any given positive integer uniquely

into numbers of a particular form. In the case of the varna prast ras, the

numbers were powers of two. For the m tr  prast ras, these were Fibo-

nacci numbers. For the t la and the t na prast ras, these were the

r gadeva and the factorial numbers respectively. All of these lead to

different kinds of unique representations for the positive integers. The

idea that the base 10 system of number representation is only one among

many different kinds of representations is a powerful idea that is made

accessible by the consideration of the combinatorial problems such as

those discussed by Indian mathematicians. The fact that these problems

are associated with cultural forms—music, dance and prosody—that are

still a living part of our experience can bring these domains closer to

mathematics. The historical perspective on Indian mathematical tradi-

tions suggests the mathematics “embedded” in these cultural forms did

not remain merely implicit, but were explored explicitly by mathemati-

cians, and led to the development of a productive tradition of combinato-

rial problems within mathematics. We believe that the discussion of the

mathematics associated with such problems holds promise in mathematics

education and in the popularization of mathematical ideas. The details of

how connections can be made between school mathematics and historical

traditions, such as the one that we have discussed in this chapter, requires

both further research and more work with learners of mathematics.

REFERENCES

Note: For a more exhaustive set of references, see Sridharan, Sridharan

and Srinivas (2010). 

Emch, G. G., Sridharan, R. & Srinivas, M. D. (Eds.) (2005). Contributions to the His-

tory of Indian Mathematics, Delhi: Hindustan Book Agency.

Krishnaswamy, A. (2003). On the twelve basic intervals in South Indian classical

music. Paper presented at the 115th Audio Engineering Society Convention.

Retrieved from http://ccrma.stanford.edu/%7Earvindh/cmt/aes11503.pdf

Nelson, D. (2008). Solka u Manual: An Introduction to the Rhythmic Language of

South Indian Music. Middletown, CT: Wesleyan University Press.

Plofker, K. (2009). Mathematics in India. Princeton, NJ: Princeton University Press. 

n

.

a

_

a

_

s
.

t
.

s
.

t
.

a

_

a

_

a

_

a

_

a

_

a

_

a

_

S
'

a

_

n

.

t
.

t
.



Number Representations and Indian Mathematics 1767

Seshadri, C. S. (Ed.) (2010). Studies in the History of Indian Mathematics, Delhi: Hin-

dustan Book Agency.

Singh, P. (2001). The Ga itakaumud  of N r ya a Pa di a, Chapter XIII, (English

translation with notes), Ganita Bharati, 23, 18-82.

Sridharan, R. (2005) Sanskrit Prosody, Pi gala Sutras and Binary Arithmetic. In

G. G. Emch, R. Sridharan and M. D. Srinivas (Eds.) Contributions to the History

of Indian Mathematics (pp. 33-62), Delhi: Hindustan Book Agency.

Sridharan, R. (2006). Pratyayas for M tr vrttas and Fibonacci Numbers. Mathe-

matics Teacher, 42, 120-137. 

Sridharan, Raja, Sridharan, R. & Srinivas, M. D. (2010) Combinatorial Methods

in Indian Music: Pratyayas in Sangitaratnakara of Sarngadeva. In Seshadri,

C.S. (Ed.) Studies in the History of Indian Mathematics (pp. 55-112), Delhi: Hin-

dustan Book Agency.

n
.

ι
_

a

_

a

_

n
.

n
.

t
.

n
.

a

_

a

_


