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Investigation 1 Pythagoras theorem by dissection

In this investigation our aim is to discover ways of proving the Pythagoras the-
orem. All the proofs that we will find involve showing that two areas are equal
- by dissection. That is, the areas concerned are cut into pieces so that one area
can be transformed into the other by re-arranging the pieces. Dissection proofs
therefore are a bit like jigsaw puzzles. It is a good idea to put the following things
together before you begin the investigation: thick card paper to cut out triangles,
squares, etc., some tracing paper or overhead transparency sheets, sketch pens or
transparency pens, a pair of scissors. It is possible to do the investigation without
these things, but having actual geometric shapes cut out from thick paper lets you
explore dlfferent poss1b111tles more easily.

Every student in high School has heard of the Pythagoras theorem and most stu-
dents can state it. The theorem is probably one of the oldest theorems in math-
ematics and was known to the Babylonians in the second millennium B.C. One
of the most impressive mathematical records from ancient history is the Plimpton
322 clay tablet (No. 322 in the Plimpton collection at Columbia University) from
about 1800 B.C. This tablet gives a list of Pythagorean triplets, that is, sets of three
whole numbers which can form the sides of a right angle triangle like {3, 4, 5} or
{8, 15, 17}. In another tablet, the Babylonians have written down the length of
the diagonal of a unit square correct to about one millionth. These are good indi-
cations that they knew and used the Pythagoras theorem. Pythagoras, the Greek
phllosopher and mathematician, lived in the 6th Century B.C. The Pythagoras the-
orem clearly was known to people from different civilizations of the world from
before that time. Why do we then call the theorem after Pythagoras? Some histo-
rians believed that he was the first to prove the theorem. However, many modern
historians think that even this is doubtful. The name remains unchanged largely
because of usage, because most people know the theorem by this name.

Let us recall the Pythagoras theorem. A common statement of the theorem runs
somethmg like this.

Theorem 1.1 The square on the hypotenuse of a right angle triangle is equal to
the sum of the squares on the other two sides.

Without knowing the Pythagoras theorem if you just looked at the right triangle for
long enough it is unlikely that you will ever guess the relation between the sides of




the triangle. In this sense the Pythagoras theorem is non-obvious and non-trivial.
It comes as something of a surprise and arouses our curiosity. We wonder what
makes the theorem true search for a proof. Being the oldest theorem, it does not
come as a surprise to learn that the Pythagoras theorem is also the most proved
theorem. Elisha Scott Loomis, who wrote a classic book in 1927 on proofs of the
Pythagoras theorem, claimed that there were over 370 dlfferent proofs each one

calling for a dlfferent ﬁgure'

Although the Pythagoras theorem is
non-obvious, it is not difficult to
prove it. One of the simplest proofs,
which you have probably seen, has
a square inscribed inside another
square. Try to discover the proof if
you cannot remember it. (If you re-
ally give up then you can see the fig-
ure shown on the next page.) You will
notice that the proof involves some al-

gebra, some manipulation of formu-.

las. Most proofs of the Pythagoras
theorem that you have seen probably

involve some algebra. In this investi- -

gation we are going to try something .

Figure 1.1: The Pythagoras theo-
rem :

different. We will try to ﬁnd proofs whlch don’t mvolve any algebralc manlpula-

tlon at all.

Figure 1.2 is an example of such a

proof. In the right angle triangle, the

two sides forming the right angle are
a and b, and c is the hypotenuse. Iden- -

tify the three squares a?, b% and ¢?.

The figure shows how you can cut up
the two smaller squares to form the
big square.

Check whether the pieces in the big
square are the same as (congruent to)
the pieces in the smaller squares. The
pieces numbered 1 and 2 are already

Figure 1.2: A dissection proof of
the Pythagoras theorem




A simple proof of theyVPythagoras theorem. You @
will need to work out the details of the proof.
Hint: Use the formula for (a + b)2.

in the big square. You have to check if the pieces numbered 3,4 and 5 are con-
gruent in both the squares. Compare Figure 1. 2 with the proof that is described
in the previous paragraph for which you turned the page. Do you see any connec-
tion? Instances of both these proofs are found in some of the ancient Indian texts
in mathematics.

There are other examples of dissections which are found in ancient Indian texts.
For example, in the Aapastamba Sulvasutra we find a procedure to compute the
area of an isosceles trapezium by dissecting it and forming a rectangle. These ex-
amples are not proofs in the same rigorous sense as found in modern mathematics
or even in Euclid. Nevertheless they are visually appealing and interesting. When
we know that two sets of figures have equal areas, it is intuitively satisfying to
find a simple dissection which can change one set into another. Moreover even
something as simple and as well known as the Pythagoras theorem can give rise
to problems that are both fascinating and sometimes very difficult. In this inves-
tigation and the next one, we will explore some of these Pythagorean dissection
problems

Let us return to our problem of dissection proofs of the Pythagoras theorem. We
have seen an example of a dissection proof. Can you find other ways of cutting up
the small squares on the sides forming the right angle and assembling the pieces to
form the square on the hypotenuse? Take a right angle triangle with sides 3 units,
4 units and 5 units. How would you cut the two smaller squares to form the bigger
square? Figure 1.3 shows one way of doing this. The 3 x 3 square has been cut up
into two 3 x 1 rectangles and three 1 x 1 squares.




5 units

B

4 units
5 3 units

Figure 1.3: Cutting two small squares to make a bigger square

. This method works for the particular triangle that we happened to choose. Will it
work for other right angle triangles as well? What happens when the triangle has
sides whose lengths are not whole numbers? What happens when the lengths of
the sides are irrational, say, when the lengths are 1, /3 and 27

It is now probably evident to you that cutting up the square into smaller rectangles
and squares has limitations. We must look for other ways of cutting the small
squares to obtain the large square which will work for any right angle trlangle Try
this out and see 1f it looks like a hard problem :

By the t1me you go through this investigation, you should be able to come up with
a number of ways of cutting up the small squares and assembling the large square.
That is, you should be able to find different dissection proofs of the Pythagoras the-
orem. In fact, there is a method which gives several ways of proving the theorem
by dissection including the one we saw m Flgure 1.2.

Do the actlvrtles described below one after another. The connectlon between them
may not be apparent at first, but they will all help in solvmg our main prob]em —
of finding drssectron proofs of the Pythagoras theorem

ACTIVITY: OVERLAPPING OF SQUARES, CENTRE TO EDGE

Cut out two identical squares, say 6 cm x 6 cm from card paper, or better still
from tracing paper or overhead transparency sheets. Put one square on top of the
other so that a corner of the top square lies on the centre of the square below as
in Figure 1.4(a). The edges of the two squares intersect at their mid- -points. It is




obvious that the area of overlap is ith the area of each of the squares. Can you
spell out the reason why this is so? '

(@) - ®)
Fikgure 1.4: Overlapping squares

Rotate the square on top a lrttle stlll keepmg its corner over the centre of the square
below as in Figure 1.4(b). How much of the area of the square at the bottom
overlaps with the area of the square on top? Compare this with Figure 1.4(a). As

the square rotates, some area of overlap is lost on one side and some area is gained
" on the other side. Compare the areas which are lost and gained. What can you now
say about the area of overlap?

Now take a square whrch is larger than these squares say 8 cm X 8 cm, Lay iton
top of one of the 6 cm x 6 cm square so that the corner of the larger square lies on
the centre of the smaller square as in the Figure 1.4(c). How much of the area of
the smaller square overlaps with the area of the larger square?

If you have found that the area of overlap is stlll 1th the area of the smaller square
find a way of cutting the smaller square into 4 pieces, each of them congruent
to the overlapping portion. (Try extendlng the lines which form the edges of the
bigger square. )

Write your results down You w111 use them later Now go on to the second act1v1ty

ACTIVITY: THE IS‘(‘)C_ELE‘S’RIGHT TRIANGLE

Consider the right angle triangle shown in Figure 1.5. It is a special right angle
triangle because the two sides which form the right angle are equal. What will
the ratio of the lengths of the sides forming the right angle to the hypotenuse be?
'From the Pythagoras theorem it follows that the area of the large square is double




the area of each of the small squares. Can you show how the two small squares can
be cut into pieces and put together to form the larger square? This is our dissection
problem for the special case of the isoceles right angle triangle.

There are two s1mp1e but different ways of
cutting the smaller squares to form the larger
square. One of them is a four piece dissection,
that is, it has only four pieces forming the larger
square, and the other is a five piece dissection.
If you have found only one of them, try finding
the other one. If you are in a hurry you could
look at the figure on the next page.

It is quite easy to find a dissection proof for the
isoceles right angle triangle. It pays however
to take a closer look at the dissections. We are

going to suggest that you look at'it in an en-

tirely new way.  This new way involves tiling
patterns. Tiling patterns which do not have any

gaps and can be extended to cover an infinitely

Figure‘ 1.5: An isoceles
right angle triangle

large area are called tesseilatlons The study of tessellations and their propertles is
an mterestmg branch of mathematics. It is also an area where a lot of new discov-
eries are still waltmg to be made. Tessellations have a relevance for the problem
that we are pursuing. In fact, we are going to make use of tessellations to discover -
solutions to our dissection problem for right angle triangles in general. But first let
us examine the dissection problem for the special case of the isoceles right angle

triangle making use of tessellations.

Imagine a floor tiled with tiles of the size of the

small square in Figure 1.5. Figure 1.6 shows

a portion of the tile. The figure also shows a

tile of the larger square placed over these tiles

so that two corners of the large square fall on

the centers of two small squares. Figures can
sometimes be misleading. So you will have to
verify that the corners of the large square actu-

ally fall on the centres of the tiles. (Hint: find

the horizontal and the vertical distance between
the centres of the tiles). Now look carefully at

N

‘Figur/é 1.6: SQuére ‘over-

lapping on a square tiling



Two different ways of cutting
equal squares to form a square
twice their size.

the areas which overlap. Does this tell you how to cut two smaller squares and
form the large square? ‘

Move the larger square over the tiles without changing its orientation and try to
find other ways of cutting the small squares to form the large square. You could,
for example, let the corner of the large square fall on the corners of the smaller
squares, or on the midpoint of their sides, and so on. Figure 1.7 shows these
possibilities. Figure 1.7(a) yields a dissection that you have already seen. Identify
which one it is. Figure 1. 7(b) shows a new dissection. Go back to Figure 1.5 and
show how the two small squares can be dissected to form the bigger square as
suggested by Flgure 1 7(b) How many pleces form the drssectron"

Flgure 1 7 leferent posmons of the overlappmg square showmg
dlfferent dlssectlon pOSSlbllltleS o ‘



ACTIVITY: THE PYTHAGORAS THEOREM BY DISSECTION

Flgure 1. 8 shows a portlon of a trlmg of squares Only four square tiles can be
seen. Another square lies on top of the tiles so that the corners of the top square
fall on the centers of the tiles below. Note that the square on top is the same size
as the square tiles below

Imagme now that the square on top i

is made slightly bigger (shown by the
dotted line in the figure). The size
of the tiles below is unchanged. How
would you have to rearrange the tiles
so that the corners of the square on top
still fall on the centers of the tiles be-
low? You are not allowed to move the
tiles so that all contact between them
- is lost. Try and ensure that adjacent
square tiles have as much contact along
their edges as possible. It is useful
to try this out by drawing various di-
agrams. It is better still to have cut  Figure 1.8: Square overlapprng
outs of the square tiles with the larger on a tiling

square drawn on transparent sheets or

on tracing paper.

......................

This is one of the important steps in finding Pythagorean dissectron proofs. So
take some time thmklng about this problem Only if you give up after a lot of
thinking, look at the figure on the next page. (However, you are allowed to look at
the previous figures and you can get a clue from looking at the tiling we drew for
the previous activity, which is shown in Figure. 1.6.)

After you have found a way of arranglng ‘the tiles so that the enlarged square on
top falls corner-to-centre on the tiles (or if you have given up and turned to the next
page), study the arrangement. How has the tiling changed? How ‘many different
squares can you see in the tiling? Look carefully at the portions of the square t111ng
covered by the square on top. If you use the results of activity 1, you should be
able to find a relation between the areas of the smaller squares and the blgger one.

Take the sides of the two smaller squares, call them a and b, and form a rlght angle
triangle out of them. What will be the area of the square on the hypotenuse? How
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The figure shows how the square tiles should be f o

- arranged so that the corners of the larger square \/
fall on their centers. Notice that the space formed
in the centre has the shape of a square.

is it related to the area of the bigger square in the tiling arrangement?

Also study the way the larger square is overlapping with the smaller squares. Does

_ this suggest to you how one each of the smaller squares could be cut and reassem-
bled to form the larger square" Draw a dlagram of the two squares a® and b2 and
show how they must be cut to form the large square as suggested by the tiling
figure.

It may be clear to you by now that we have indeed discovered a dissection proof of

the Pythagoras theorem. The three different squares are the squares drawn on the

sides of the right angle triangle. It is convenient to give names to these squares. In

the right angle triangle, let the sides which form the right angle be a and b and the

hypotenuse c. Let us choose a to be bigger than b. We will call the square drawn

on side a the a- square The square drawn on side b will be called the - -square and
the square on the hypotenuse will be the I'- -square. The [(-square is the smallest

square.

As in the case of the isoceles right angle triangle (activity 2), we can obtain differ-
ent dissections by moving the I'- -square to different positions on the tiling. Explore
these arrangements and see how many dlssectrons are possible. To see more possi-
b111t1es ‘you may have to extend the t111ng by addlng more of the o and 3-squares.
‘ Below in Figure 1. 9 you will find some possibilities. Match the dissections shown
on the left with the t111ng arrangements shown on the right. At the beginning of
the 1nvest1gat10n we enccuntered a dissection proof (Figure 1.2). Find the tiling
arrangement Wthh gives this proof

Notice that in each of the arrangements the corners of the F square fall on con-
gruent points of the a-squares. In the first tiling arrangement shown, for example,




points A, B C and D are congruent points on congruent squares. By this we mean
that the position of A within the first a-square is the same as the position of B
within the second a-square. Such points are called congruent points. It is neces-
sary for the corners of the I'-square to fall on congruent points for the dissection
to be possible. Is this condition satisfied as you move the [-square over the tiling
arrangements? Check if the corners of the I’-square fall on congruent points in the
other arrangements in Figure 1.9. (What happens if you rotate the I'-square?)

The question of the generality of the dissection proofs shown remains. Can the
dissection proof that you have discovered be used for any right angle triangle? In
- the tiling arrangement shown the square at the centre, the B-square is smaller than

the o square. What happens if you go on increasing the length of side 5? Does the -

dissection still work? What happens if side b equals side a? How will you make
the dissection work if side b is bigger than a?

We have been successful in finding a general method to obtain various dissections
of the a and B-squares into the I-square. In the next investigation, we will gener-
alize our problem and then look for solutions to new problems, all of which have
to do with the Pythagoras theorem. I

11
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B 2
/\ >

- T 5 1

A e i A

\/ 4
3
D , 5
2

4 2

Figure 1.9: The left hand side of the figure shows different posi-
tions of the overlapping square. The right hand side shows differ-
ent dissection possibilities. Match the tiling arrangements on the
left with the corresponding dissections on the right.
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Investigation 2 Other 'Pythagbreandissecti(k)hs

We have explored dlfferent ‘ways in whxch the Pythagoras theorem can be proved
by dissection. In this investigation, we are going to explore a general version of
this problem. Recall that the Pythagoras theorem in the standard version of the
theorem speaks of squares drawn on the sides of the right angle triangle. Have
you ever wondered why only squares have to be drawn? Can the figures drawn on
the sides of the right angle triangle be different from squares? Let us modify the
Pythagoras theorem by replacing all the squares in the theorem with equilateral
triangles. Would the modified Pythagoras theorem still be true?

Theorem 2 1 In any right angle triangle the equilateral triangle on the hypotenuse
is equal to the sum of the equilateral triangles on the s1des forming the right angle.

Figure 2.‘1‘ shows equilateral triangles drawn on the three sides of a right angle
triangle. Can you prove theorem 2.1 or show that it is in general false?

It is easy to find the formula for the
area of an equilateral triangle. The
height h of the triangle is given
by the Pythagoras theorem in the
standard version. (See Figure 2.2.)

a\?2
— 2 _{_
h = ya (2)
= 2
YTy
32  V3a Figure 2.1: Right angle triangle with
- 4T 9 equilateral triangles drawn on the

sides




Area of an equilateral triangle =

base x height

2
= — XaXa
= l/——?: x a2
) «
Hence,
. : 3
Area of an equilateral triangle = e X Area of a square

We know from the Pythagoras theorem ink
the standard version (Theorem 1.1) that
a? + b? = c?

Multiplying throughout by -‘{g we get,

V3 312 _ 3

T(I? -+ ‘%—b2 = {_02

from which it follows that the sum of the
areas of the two equilateral triangles on the
sides a and b is equal to the area of the

equilateral triangle on the side c¢. Hence
Theorem 2.1 is proved.

It is possible to think of other figures
drawn on the sides a, b and c. Fig-

ure 2.3 shows regular pentagons drawn on -

the three sides of a right angle triangle.
Is the Pythagoras theorem also true for
these pentagons? Is it true for other reg-

Figure 2.2: Equilateral trian-
gle

ular polygons? What about irregular polygons?
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Any polygon, regular or irregular, can be
cut up into triangles. Figure 2.4 shows
how this can be done by drawing all the
diagonals of the polygon from one of the
vertices. If two polygons aré similar then
it is not difficult to show that for each pair
of corresponding triangles into which the
polygon can be dissected, the triangles are
similar.

To prove this start with a triangle contain-
ing two sides of the polygon with the in-
cluded angle as one of the internal angles
of the polygon (AABC and AA'B'C’ in
the figure).  These two triangles are sim-
ilar to each other since the two pairs of
sides {AB, A’B'} and {BC, B'C'} are in

Figure 2.3: The Pythagoras

theorem with pentagons on

‘the sides of the right angle tri-

angle

the same proportion and the included angle is the same. Now consider AACD
and AA'C'D’. Two pairs of sides, {AC, A’C’} and {CD, C'D'} are similar. The
included angles ZACD and /A'C'D’ are equal, being the difference of the angle
in the polygon and an angle of the first pair of triangles that we have already seen
to be similar. Hence AACD and AA'C'D' are similar. In this way we can show
that in each pa1r of correspondmg trlangles in the two polygons, the trlangles are

similar,

If two triangles are si,rnilar,*i the ratio of |
their heights is equal to the ratio of their -

sides. Hence the ratio of their areas is the
square of the ratio of their sides. Since two
similar polygons can be broken up into
similar triangles, we can conclude that the
ratio of the areas of similar polygons is the
square of the ratio of their sides.

Now 1magme that s1m11ar polygons have

been drawn on the three sides a, b and ¢ ’ ’

of a right angle triangle, where c is the hy-
potenuse. Let, P, P, and P, be the areas

of these polygons respectlvely We know that

Fiygtl/re 24 'Sbikrnilark polygons o
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b2 | o

by r

-}—);:aE or Pb:PaXZLEV
L= or P =P, x—
P, a? I L

From the standard yersion of the Pythagoras theorem ¢2 = a? + b2.ﬂsubstltuting, i
we have ‘ ,

(a®+0%) b

P.=P, 5 =Pax1+Pa><' ~P+Pb
A a , L

Thus we have a general vers1on of the Pythagoras theorem for s1m11ar polygons

Theorem 2.2 In any rrght angle triangle, if similar polygons are drawn on the-

 three sides, the area of the polygon drawn on the hypotenuse is equal:to the sum -

of the areas of the polygons on the srdes formlng the rrght angle

In fact, the Pythagoras theorem need not be restrlcted to polygons The theorem
would hold true for any set of similar figures composed of straight lines-or curves,
which are drawn on the three sides of the r1ght angle trlangle i SN

Since our main interest is in dtssectlons and since we ‘will restrict our attentlon
to polygons, we can now ask the question whether it is possible, in general, to
cut the polygons on the sides forming the right angle and assemble the pieces to
form the hypotenuse. A well known and powerful theorem, which was proved -
independently by two mathematicians is of relevance to us. The mathematicians
were F. Bolyai, a Hungarian who proved the theorem in 1832 and P. Gerwien, a
German who proved the theorem in 1833 Let us state th1s theorem wrthout proof

Theorem 2.3 (Bolyar Gerwren theorem) If there are two polygons of equal area,..
then it is always possible to cut one of the polygons into a finite number of pieces
and reassemble the pieces to form the second polygon.

Is this theorem useful for the dissection of s1m11ar polygons drawn on the srdes of

a right angle trrangle? We could always j join the two smaller polygons ‘drawn ¢ on -
the sides forming the right angle in any way we liked and get a joint or composite
polygon. The Bolyai-Gerwien theorem is valid for polygons of any arbitrary shape.
So we can cut this composite polygon into a certain number of pieces and assemble
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the pieces to form the. polygon on the hypotenuse However the theorem does not
say anythmg about how many pieces we have to cut the first polygon into. In

general, the number of pieces may be quite large. It is very challenging problem
to find a dissection which involves the minimum number of pieces. We will call

such dissections elegant By an elegant dissection, we mean a dissection which is

1. valid for a right angle triangle of any size havmg polygons similar to the

ones on the given right angle triangle,

2. which involves as few pieces as possible.

Condition 1 means that once we have found a way of dissecting the polygons for
a given right angle triangle, we can change the lengths of the sides a and b of
the triangle in any way we please. The dissection would still work and we don’t
have to search for a new dissection. Condition 2 is an incomplete condition since

we do not know in advance what the minimum number of pieces required for the

dissection is. However this is not an obstacle, rather provides a perennial challenge

and great d1ssectron1sts have been spurred on to “go one better”, that is, to reduce

the number of preces in a known dissection by finding a new one.

We w1ll call an elegant dissection Wthh transforms the two polygonal ﬁgures on

the sides contammg the rrght angle into the polygon drawn on the hypotenuse a
Pythagorean dissection. Fmdmg a Pythagorean dissection for any polygon, even
for regular polygons is in general a very hard problem. We will explore two kinds
of polygons below for which Pythagorean dissections can be found relatively more
easily. :

PYTHAGOREAN DISSECTION OF RECTANGLES

It turns out that we can use the trlrng idea that we. used for the Pythagorean drs- ‘k
section of squares also for rectangles. Let us draw rectangles on the three sides

of a right angle triangle. Remember from theorem 2.2 that the three rectangles
must be similar. That is, the ratio of the length and width must be the same for all
the rectangles. Figure 2.5 shows similar rectangles drawn on the sides. of a right
angle triangle. We will call the sides common to the right angle triangle and the
rectangles, the widths of the rectangles. So the width of the three rectangles are a,
b and c respectively. For each rectangle let the height be & times the width. If & is

more than 1 we have tall rectangles on the sides since the heights of the rectangles




&

will be more than their widths. If k is less than 1, the herghts will be less than the
widths. The area of the three rectangles will be ka?, kb? and kc? respectively. Fol-
lowing the convention that we have adopted we will call the rectangle with width
a the o rectangle, the rectangle with width b the g- rectangle and the rectangle w1th

width ¢ the T-rectangle.

Let us now go back to the tiling arrange-

ment that we used in Investigation 1 and
 try to make it work for rectangles. In the - \
tiling arrangements the 3-square is at the -

centre and the four a-squares are around

it. In the same way let us place the 3-.
rectangle in the centre and four of the a- -

rectangles around it as in Flgure 2.6.

In Investigation 1 the I‘ -square was placed
on the tiling arrangement so that its cor-

ners fell on the centres of the four a-

squares. This is important because these
four points are congruent points of the
tiling arrangement. If we shift the I'-

’F‘igure '2.5: Rectangles drawn

on the right angle triangle

square without rotation, its corners fall on congruent pomts of the tiling. We need
to check if thrs happens w1th the t111ng arrangement of Pythagorean rectangles

Check if in F1gure 2.6 the d1stance be-
tween “the centres of two of the a-
rectangles is equal to the length or to the
width of the [-rectangle. That is, is the
distance equal to ¢ or to kc?

From the figure we find that the horizontal
distance between the centres of the two -
rectangles is k“ + & = ka. If the small

B-rectangle was not present in the cen-“"
tre of the tiling, the centres of the two'a-

rectangles would be on the same horizon-

tal line, The (-rectangle pushes the centre

up vertically by a distance b. So the ver-

ka ’B
al et |y
kb t

o Figure 2,6: A tiling arrange-’
‘ment of rectangles .

tical distance between the centres of the
Q- rectangles is b From the Pythagoras theorem we can write down the distance -
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between the two centres as v/k2a? + b2. This is not equal to either kc or c.

Look at the expression inside the square root in the previous paragraph. What
‘should the terms be if we want the square root to reduce to kc? Clearly we need to
have k2b? instead of b”. Can we change the arrangement of the rectangular tiles so
that we have kb as the vertical distance? Don’t be in a hurry to turn the page over
and look at the arrangement. You will surely be able to find it.

If you have found the correct arrangement, study it. Do all the four corners of
the I'-rectangle fall on the centres of the four a-rectangles? Does this give you a

dissection of the o and fB-rectangles into the I'-rectangle? In order to check this

you will have to first find a way of cutting up the a-rectangle as suggested by the
tiling arrangement. (Hint: Draw lines to extend the edges of the I'-rectangle in the
tiling arrangement.) Next you will have to show that the pieces in the I'-rectangle
are congruent to the pieces that you have cut the o- rectangle into.

Just as we did for the tiling arrangement for squares, move the F rectangle to
different points and see if each position yields a different dissection. Do the four
corners fall on congruent points in the a-rectangles in these different positions?

Another question to explore is what happens when the relative sizes of a and b

change? What happens as b becomes blgger equal to a and then brgger than

a? Does the tiling arrangement still give you valid Pythagorean dissections of

rectangles? What happens if you change the value of k, the ratio of the length
to the width of the rectangles? The figure on the followmg page also the tiling
arrangement for some long rectangles.

We have seen that by means of a tiling arrangement we obtamed a successful

Pythagorean dissection of rectangles just as we did for squares. Would tiling ar-
rangements work for other polygons? One of the conditions for the tiling arrange-
ment to yield a successful dissection is that the corners of the ['-rectangle falls on
congruent points of the a-rectangles. Unfortunately, this is not the case for other
polygons Hence the t11mg arrangement does not help us in ﬁndmg Pythagorean

dissections of other polygons even other regular polygons ThlS does not mean |
however that we cannot ﬁnd dlssectlons for other polygons as we shall see in the

next SCCthn




rectangles. Note the different N
arrangement for long rectangles.

Tiling arrangements for the A< . 4 : | ¢
Pythagorean  dissection of ' % ‘

PYTHAGOREAN DISSECTION OF EQUILATERAL TRIANGLES

Let us go back to Figure 2.1 which we drew at the beginning of this investigation.
The figure shows equilateral triangles drawn on the three sides of the right angle
triangle. We know that the sum of the areas of the equilateral triangles on the two
sides forming the right angle is equal to the area of the equilateral triangle on the
hypotenuse. Can we find a dissection of the two smaller equilateral triangles into
the equilateral triangle on the hypotenuse?

We made a brief remark that the tiling patterns and arrangements do not yield a
suitable dissection. We will leave it to you to check whether this is indeed true. A

simple and elegant dissection of the equilateral triangles was published by Alfred
Versady, a Hungarian, in 1989. Greg Frederickson, in his classic book on dissec-
tions, writes of this dissection: “it is humbling to wonder how this dissection was
discovered”. It is not always possible to follow a technique or a recipe or a thumb
rule to make discoveries in mathematics. There are innumerable instances of dis-
coveries which simply are brilliant and one fails to understand how the discoverer
found them. And here is another interesting fact: Versady is not a mathematician.

He is a technical draftsman and technical designer who lives in a small village -
called Metten in Hungary. He has made several brilliant discoveries concerning -

dissection problems.

Dissection problems are simple to understand and yet challenging and stimulating.
That perhaps explains why, in this area of mathematics, amateurs still continue to
compete with and often surpass professional mathematicians. Frederickson’s book

s
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mentions a number of these amateurs who have contributed to geometric dissec-
tion problems. Engineers, draftsmen, designers, architects and artists jostle with
mathematicians, physicists and computer scientists in the book. Dissection prob-
lems received repeated discussion in Martin Gardner’s famous column ‘Mathe-
matical games’ and became very popular. In the 1960s when Martin Gardner was
writing about dissection problems, the world’s leading expert on dissections was
Harry Lindgren. Lindgren started his career as an electrical engineering draftsman
and worked as a patent examiner of electrical specifications in Australia when he
became the world’s expert on dissections. Harry Lindgren wrote about the dis-
sections that he discovered in another classic Geometric Dzssectzons published in
1964.

Let us study the Pythagorean dissection of equilateral triangles discovered by Ver-
sady. Figure 2.7 shows the three equilateral triangles of sides a, b and c. It is
convenient once again to refer to these triangles as the «, 3 and I'-triangles respec-
tively. The « and the [ triangles are arranged edge to edge so that one of their
vertices coincides at B. The vertex of the I'-triangle coincides with another vertex
of the S-triangle at D. The top edge of the I'-triangle intersects an edge of the a-
triangle at J which is the mid-point of the side AC. To show that the dissection is
indeed correct we need to show that the pieces marked with the same numbers are
congruent to each other.

The pieces numbered 1 and 2 are inside the I'-triangle as well as inside the o
or (-triangle. Compare ADBG and ADKH in Figure 2.7. These triangles are
composed of the pieces numbered 3 and 4. /DBG and /DKH are both equal to
120°.  /BDG is equal to /ZKDH since they are both equal to the difference of
60°and /NDK. The segments DB and DK are equal. Hence ADBG = ADKH.
By choosing the point M on DH such that DN = DM, we can ensure that the pairs
of pieces formed by the numbers 3 and 4 are pairs of C()ngruent triangles.

It is easy to show that the two remammg pairs of trrangles (numbered 5 and 6)
are pairs of similar triangles. (It is more difficult to show that they are congruent.)
In Flgure 2.7 consider the trlangles numbered 5, AJFL and AHCL. /F and LC
are each equal to 60°. The vertically opposite angles /HLC and /JLF are equal
So the two trrangles are similar. By similar reasonmg we can show that AIEG is
similar to AIAJL These are the trlangles numbered 6.

~ We know that the area of the I'-triangle is equal to the sum of the areas of the o and
 [-triangles. The pieces marked 1 and 2 are common to the I" as well as the other
~triangles. We have seen that the pieces marked 3 are congruent and hence equal
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D

Figure 2.7: Versady’s Pythagorean dissection of equilateral trian-
gles ‘ ‘ ' '

wﬂ‘a«‘&wm



in area. Similarly the pieces marked 4 are congruent and hence equal in area. It
follows that the total area of the pieces marked 5 and 6 in the I'-triangle is equal -

to the total area of the pieces marked 5 and 6 in the « and S-triangles. We will use
this fact later on.

A

(a) (b) (c)
Figure 2.8: Rotating the I'-triangle

How do we show that the pieces marked 5 are congruent to each other? We will

show this indirectly. Let us keep the I'-triangle with one of its vertices coinciding

with D and one of its edges horizontal as in Figure 2.8(a). Now rotate the I'-
triangle anti- clockwxse about the point D. The horizontal edge of the T" triangle

rises up to meet the base of the a- tr1angle As the rotation is 1ncreased a small

triangle, ,AJFL begins to form over the edge AC as in Figure 2.8(b). Similarly
a triangle, AHLC, forms over edge DF. In order for these triangles to form we
need to show that DF is always greater than the distance DC. This in fact is true
whatever be the relatlve proportions of a and b. We will leave the proof of this to
you.

are similar. As we increase the rotation the areas of these two similar triangles
change. Notice that in the beginning as the triangles are forming AJFL is bigger
in area than AHCL. But after some rotation just before the point F crosses AC,
AJFL is clearly smaller in area'than AHCL. Since the rotation changes the areas

continuously, we can assume that there is at least one point of the rotation where
the areas of the triangles JFL and HCL are equal. Let us find out how many such

points can be found.

C(;mpare'thé two triaﬁgles AJFL and AHCL. /F and /C are each equal to 60°.
The vertically opposite angles ZHLC and /JLF are equal. So the two triangles




Suppose that the area of AHCL is equal to the area of AJFL. We know that these
two triangles are similar. Similar triangles can be equal in area only if they are
congruent. Hence AHCL 2 AJFL.

Now refer back to Figure 2.7. Each pair of corresponding pieces in the I'-triangle
and in the o and B-triangles are now congruent except the pair consisting of AIEG
and AIAJ. However we have seen that these two triangles are similar. But their
areas must be equal since the area of the I'-triangle is equal to the the sum of areas
of the o and (-triangles. Hence AIEG = AIAJL

Now it is not difficult to show that J is the mid point of AC. The details are left as
an exercise for you. The steps are,

1. Show that EG = HF.

2. Show that HF = JC. Hence EG = JC.

3. Show that AT=EG.
4. Hence AJ =JC.

We see therefore that if AHCL is equal in area to AJKL, EF cuts AC at its mid-
point J. This produces the dissection that we require. Since there is only one
midpoint on AC it follows that as the T-triangle DEF rotates about point D, there
is only one position where the where the areas of AHCL and AJKL are equal.

However as the I'-triangle is rotated about point D, we find that the side EF inter-
sects twice with the midpoint of AC which is J. One of these positions is the one in
Figure 2.7. The other position can be easily found and it is given by the reflection
of EF about an axis passing through the point J. It is interesting to ask whether the
other position also yields a dissection. The answer is ‘yes’ and we shall see this in
the next section.

AN ALTERNATIVE PYTHAGOREAN DISSECTION OF THE EQUILATERAL TRI-
ANGLE

Figure 2.9 shows the path traced by the point F as the ['-triangle rotates about point

~ D. The path is a circle with centre at D and radius equal to the side DF. The point

E also moves on this circle. We can see that EF is a chord of the circle. E'F' is
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Figure 2.9: The path traced by points E and F

the reflection of this chord about a radius drawn through the point J and is hence
equal to EF. The position of the I'-triangle with its vertices at E' and F' is shown by
dotted lines in Figure 2.9. This is clearly the other position in which the side EF
of the I'-triangle intersects AC at its midpoint J. Let us now examine whether this
posmon ylelds a dlssectlon of the o and ﬂ equ11ateral trlangles into the I‘ trlangle

Flgure 2.10 shows how thls dlssectlon is poss1ble We need to make some con-

structions in order to obtain the right pieces for the dissection. The line segment
BC is extended till it meets segment DF in L. The line segment DE is extended till
it meets AC in H. The line segment EG is constructed such that /DEG = 60°. Mark
point P on EF so that JP = JE. Mark point L so that JL = JH. Draw the segment

PL. This dissection hence has 6 pieces like Versady’s dissection. We now have to

show that the pieces marked with the same numbers are congruent to each other.

The pieces numbered 1 and 2 are inside the I'-triangle as well as inside the o or
B-triangle. Next compare the quadrilaterals DBGE and DKIF which are made up
of the pieces numbered 3 and 4. /DEG and /DFI both are equal to 60°. /DBG and
~ /DKI are both equal to 120°. /BDE and /KDF are both equal to the difference
of 60°and /NDK. It follows that the remaining angles in the two quadrilaterals

wa oo ]
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- Figure 2.10: An _altémétive Pythagorean dissection of equiiateral
triangles |
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(BGE and /KIF are equal Further the segment BD = DK. Therefore quadrrlateral,
; DBGE is congruent to quadrrlateral DKIF. By choosmg the pomt M so that DN
= DM, we can ensure that the two palrs of pieces numbered 3 and 4 are palrs of v

congruent ﬁgures

| Next consrder the preces numbered 5 whrch are the trrangles AJEH and AJPL By{ S

construction JP = JE and JL = JH. The vertically opposite angles ZPJL and (EJH
are equal Hence the two. trrangles are. congruent Now compare t the quadrrlaterals; N
EGAH and CIPL which are the pieces numbered 6. /GEH and /ICL are both

equal to 120°. (HEJ is equal to 120°%since it is an external angle of ADEF. /LP]J
= /HEJ = 120°since AJEH & AJPL. AIPL forms a linear pair with /LPJ and
~ hence /IPL = 60°. In the quadrllaterals EGAH amd CIPL, /GAH = /IPL = 60°.
LAGE is congruent to /PIC as they form linear pairs respectively with congruent
angles /ZEGB and /FIK which are interior angles of congruent quadrilaterals. We
have seen that three of the angles in quadrilateral EGAH are equal respectively to

three of the angles in quadrilateral CIPL. Hence the fourth pair of angles are also ‘

equal and the two quadrilaterals are similar. We know that the areas of the two
quadrllaterals are equal since they are the last pair of preces which are part of the
« and the - trrangles Similar quadrilaterals can have equal area only if they are
congruent Hence the two quadrllaterals EGAH and CIPL are congruent. So all
the pleces marked w1th the same numbers are congruent to each other

We have seen two possrble Pythagorean drssectlons for equllateral trlangles Al-‘ ,

though the dissections themselves were simple, discovering them or provmg that
the dissections were correct, that is, that the pieces were congruent, was not so
simple. In general, it is a hard problem to find Pythagorean dissections for even
simple figures such as parallelograms or regular polygons with a small number of
sides like the pentagon and the hexagon. We ‘are not aware of Pythagorean dissec-
tions for these ﬁgures We invite you to try and so]ve these problems and dlscover
new drssectrons : '




In&esitigation\?i Exploring Graphs -

~ The word ‘graph’ is certainly familiar to you. It probably reminds you of functions

like y=x2? or y= 3x + 2, which you can plot on graph paper by drawing the
coordinate axes. It might also remind you of bar graphs which we use to present
data. The graphs that we are going to explore are very different from these graphs.
Here are some examples of graphs of the kind we will explore in this investigation.

Figure 3.1: Some graphs

These kinds of graphs are sometimes called networks. Like the other kinds of
graphs, these also are pictorial representations of some kinds of data. They are also
mathematical structures with interesting properties. Graph theory is a branch of
mathematics which studies the properties and applications of graphs or networks.
As one.can see from Figure 3.1, graphs essentially consist of points called vertices
and lines that join two vertices called edges. ' e E
The exact shape of a graph is unimpor-

tant. What matters is which vertices are

connected to which and by how many A B

edges. For example in Figure 3.2 the two ‘

graphs shown are the essentially the same. @ ,
‘The square graph has been stretched and b c A B C D

squashed into a line. When we name ‘

the points appropriately we find that each Figure 3.2: Isomorphic graphs
point is connected to the same points in

both graphs. A fancy way of saying that the graphs are the same is to say that
they are isomorphic (iso = same, morphe = form). The graphs in Figure 3.3 are
isomorphic with the graphs in Figure 3.1. Match the graphs which are isomorphic.
One way to check if two graphs are isomorphic is to twist parts of the graph around
in your imagination without breaking any of the connections. Another way is to
find the correct way of naming the vertices, so that each vertex is connected to the
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same vertices in both graphs. Find the correct way of naming the vertices for each

pair of isomorphic graphs in Figures 3.1 and 3.3.

Figure 3.3: Can you recognize these graphs?

What kinds of data can graphs represent? Let us consider an example from cricket.
There are six teams — a, b, ¢, d e and f playing in the world cup league. At a certain
stage we have the following information about the matches that have been held.

a has played ¢, d and f.
b has played c, e and f.
¢ has played 2 matches.
d has played 3 matches.
~ehas played 3 matches. |
f has played 4 matches.

It is convenient to draw a graph to represent this
data. We draw the graph with 6 vertices shown in
Figure 3.4. When two teams have played a match
we join them by an edge. If we start by marking
the 6 vertices on plain paper, you will find that
it is easy to reconstruct all the information about
which teams have played each other. Also from
“the graph it is very easy to answer other questions
such as which matches have not yet been played.

In this case we do not really need to draw a graph
to answer questions about the tournament. As we
proceed with exploring more problems and puz-
zles we will discover how useful it is to draw
graphs to represent the data in the problems.

Figure 3.4: The world
cup league
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IMPOSSIBLE PATHS

Many school children are familiar with the diagram shown in Figure 3.5. The
problerﬁ is simple — trace the diagram shown in one continuous ling, that is, draw
the diagram without lifting the pen and without tracing the same edge more than
once. Try it out. The problem is frustrating and appears to be impossible. The
solution lies in a trick. You fold a corner of the paper over one of the edges and
move the pen over the folded paper. By doing this you are effectively retracing an
edge but not actually drawing your pen over it. This of course is cheating.

- Now that you have seen some graphs in Fig-

ure 3.1, you would recognize that the diagram in
the puzzle is a graph. Is it possible to trace the
graph in one continuous line without cheating?
If it is not possible, can one prove that it is im-=
possible? Sometimes it is a useful technique in

- mathematics to change the conditions of a prob-

lem to see what effect it has on the solution. Let
us change the graph a little and see if it can be
traced in one continuous line. The graph has a
square with diagonals and four ‘ears’ drawn round
the sides. Rub out one of the ears of the graph and
check whether it becomes possible to trace it. What happens if you rub out two
ears? What happens if you rub out all the ears one by one? Check which of these
graphs can be traced continuously. The graphs are shown in Figure 3.6. Can you
find anything common among the graphs that can be traced?

Figure 3.5: Tracmg a
graph

Figufc 3.6: Whiéh of thése'g‘raphs can be traced?

If you have found out which ’can be traced and which cannot, you have probably
made a hypothesis that symmetry has something to do with being able to trace a
graph. But this is just an artifact of the graphs that we have chosen. It so happens
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that the graphs which look symmetric in Figures 3.5 and 3.6 cannot be traced and
the graphs which can be traced are not symmetric. Just to resolve this question, try
tracing the graphs in Figure 3.7. There is a symmetric graph which can be traced
and an asymmetric one that cannot be, Try to find other symmetric graphs which
can be traced and asymmetric ones which cannot be traced.

Think of the vertices of the graphs in the
tracing problems as cities and the edges
leading to them as roads. Suppose you are
driving through the graph in a bus. You
can enter a city more than once, but every
time you must enter it and leave it through
a different road. How many times can you
then enter and leave the city? Every time
you come to a city, you need a pair of
roads — one road to enter it and one road to leave What happens if the number
of roads leading to a city is odd? You can enter it but you cannot leave! Is there
any other possibility? Think about vertices with odd and even number of edges
connected to them and you will figure out why some of the graphs in Figure 3. .6 ‘
can be traced and why some of them cannot be.

Figure 3.7: More graphs to
trace

Let us look once again at some of these graphs. In
Figure 3.8, the vertices have been named. Try to
trace the graph by using different starting points. - A _aB
Start with A first and check if the graph can be
traced. Then try starting with B, C and D in
turn. Also make a note of the ending point each
time. What can you say about the starting and the
ending points? Examine the starting and ending
points in the symmetric graph in Figure 3.7. How
do you explain the coincidence of the startmg and
endmg points?

Figure 3.8: Different
starting points
The number of edges which are connected to a

vertex is called the degree of the vertex. When the degree of a vertex is zero, there -
are no edges connecting it with any other vertex, so the vertex is isolated.




32

The solution to the tracing problem depends on odd and even vertlces that is, on

~ sentially the same. Figure 3.10 is a sim-

Figure 3.9: A graph which (a) is dlsconnected and (b) contams an |
isolated vertex

Sy

whether the degree of a vertex is odd or even. You have probably discovered that
a graph can have utmost two odd vertices to be continuously traceable. A graph
with all vertices even can also be traced, like the one in Figure 3.7. What about a
graph with only one odd vertex? First try and draw such a graph and then check if
it is continuously traceable. : :

There is a very simple relation between the degrees of the vertices and the
number of edges. The degree of a vertex is how many edges are connected to
it. So the sum of the degrees of all vertices gives the sum of all the connections
that edges make with vertices. Each edge is connected to two vertices, so has
two connections. It follows that the sum of the degrees of all vertices is twice the
number of all edges. In the light of this relation, can the sum of the degrees of all
vertices be odd? What can you then say about the number of odd vertices in any -

‘graph?

A famous graph tracing problem lies- at
the historical origins of graph theory. The
problem, well known as the Koenigsberg
bridge problem, is only superficially dif-
ferent from the tracing problem but is es-

plified map of the bridge at Koenigsberg.
There are two islands in the middle of the
river Pregel. Seven bridges connect these

islands to the opposite banks of the river ; | C
and to each other. The amusement that the ; -
citizens of Koenigsberg had devised for Figure 3.10: A schematic map

tourists (and for themselves) was to walk of Koenigsberg



over all the bridges exactly once. As a tourist who knows about graphs you would
of course have an advantage. Draw a graph which represents the Koenigsberg
bridges. What will you choose to be the vertices and what the edges? Can you say
whether the walk is possible?

The great Swiss mathematician Euler was the first, as far as we know, to solve
this problem. He lived in the 18th century and spent most of his working life
in St. Petersburg in Russia (now Leningrad). St. Petersburg was not far from
Koenigsberg. (Both the cities are on the coast north of Poland and are about 800
km apart. Koenigsberg is also in Russia now and is called Kalaningrad.) Euler
showed that it was impossible to walk through the seven bridges exactly once, by
arguing in a manner similar to ours. In doing so, he sowed the seeds of graph
theory.

For the rest of this investigation, we are going to place some restrictions on the

kinds of graphs that we will discuss. We will stipulate that two vertices of a graph -

cannot be connected by more than one edge. We have relaxed this constraint for
the graphs that we have seen so far. We will stipulate further that a vertex can-
not be connected with itself. (All the graphs we have seen so far actually satisfy

this constraint.) Graphs which satisfy these two constraints are sometimes called

simple graphs. Henceforth the word ‘graph’ will just mean a ‘simple graph’.

These constraints also force some restrictions on the degrees of a vertex. For a -

graph with n vertices, any vertex can have a maximum degree of n — 1 since it
can be connected only once to the remaining vertices. The minimum possible
degree of a vertex in any graph is of course zero. Suppose we have a graph with 4
vertices. What is the maximum number of edges possible? Each of the 4 vertices
can be connected to 3 other vertices. So the sum of the degrees of all the vertices is
4 x 3 = 12. This is twice the number of edges. So the maximum number of edges
a graph with 4 vertices can have is 6. (Draw the graph and verify this for yourself.)
In general a graph with n vertices can have a maximum of #=1) edges. A graph

2
havmg the maximum number of edges possible is called a complete graph

DEGREE SEQUENCES OF A GRAPH

The scout camp puzzle Boy scouts and glrl guides from all over the country ,

attend a fortnight long camp. They have thoroughly enjoyed themselves and

made many new and close friendships. After the camp, seven members of a

new group of friends decide to write letters. Some of the friends are more
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N cnthQSiastic at writing letters. Two of them write 5 letters each, two write
4 letters each, two write 3 letters each and the last friehd writes only one
‘letter. When the letters ar¢ delivered, to everyone’s surprise, they find that

they have received letters from exactly the same people they wrote to.

Is this scenario possible and can you figure out who wrote to whom? Note: '
that each friend writes no more than one letter to any person. Also nobody
writes a letter to himself or herself. o ‘ o

It is possible to represent this ‘pu‘ZZle‘ in
the form of a graph. Each friend is shown . ,
by a dot and an exchange of letters by an A &8
edge connecting two dots. Note that in a )
graph when two vertices are connected by
an edge, the relation between them is sym-
metric. In our case this condition is sat-
isfied since in every case where a friend
writes a letter to another friend, he also re-
ceives a letter from the same friend. If he
“wrote a letter to a friend but did not receive -
one, the condition of symmetry would not
be satisfied. (Of course, in such a case, |
there would be no puzzle to be solved) , ~ ;
The graph in Figure 3.11 is an example different from the puzzle. It shows the
case of 4 friends writing 2 letters each and receiving letters from the same persons
they wrote to. ' R

D C

Figure 3.11: ‘Solution to a
simple puzzle: four friends
write two letters each and re-
ceive letters from the same
person they wrote to

The solution of the scout camp puzzle reduces then to drawing a graph that has 7
vertices. Each edge of the graph'corresponds to each exchange of letters mentioned
in the puzzle. Try and draw this graph. (There are several possibilities and one of
them is drawn on the next page.) & R

In some cases it may be impossible to draw such a graph. Some of these cases
are easy to identify quickly. It is impossible, for example, for any of the 7 friends
to write 7 letters. At the most only six letters can be written since you are not
allowed to write more than one letter to the same person or t0 write a letter to
yourself. This corresponds to the condition that any vertex in the graph can have a
maximum degree of 6. W et o el b T

Another case where the puzzle has no solution is the following. Let us suppose,
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One of the possibilities for the scout camp prob-
lem. There are other possibilities too.

for example, that each of the seven friends writes one letter. It is impossible to
have a graph with 7 vertices each of degree one. (Why? Think of how many odd
vertices there can be.) This does not of course mean that the seven friends cannot
write one letter each. It just means that the condition specified in the puzzle cannot
be satisfied. It is not possible for each one of them to receive letters from exactly
the same person to whom they wrote. ~ '

For similar reasons one can say that it is not possible for all the friends to write
3 letters each and receive letters exactly from the person they wrote to. What can
one say about the following case: the friends write 5,5,3,2,2,1, 1 letters respec-
tively? Applying the same principle, that any graph must have an even number of
odd vertices, shows that this graph too is impossible.

There are some cases which appear to

have solutions but do not. Consider, for

example, that the friends write 6, 5, 4, ' n >

4, 2,2, 1 letters respectively. Here there A

are two odd vertices, and the maximum ¢
degree is 6. So it appears that the graph

must be possible. However it turns out

that this is not the case. Figure 3.12 shows D

an attempt to draw the graph for this case , \ '

which has stopped half way. Of the 7 ver-
tices, the first two A and B, have been
shown correctly with degrees 6 and 5 re-
spectively. The next vertex C must have a

degree of 4. This is impossible if we re-

F E

Figure 3;12: An incomplete
graph showing an impossible
condition for the puzzle
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strict the degrees of the last three vertices to 2; 2 and 1.

How do we find out if it is possible to draw a graph for any case of the puzzle
in general? If the number of vertices (friends) are fairly large, it would be very
difficult to try and draw the graph by trial and error. Fortunately, a simple algorithm
exists which allows us to find out if a certain distribution of letters is possible. This
algorithm allows us to find out if a graph can be constructed for a given degree

sequeice, that is, whether a given degree sequence is graphic.

‘We first write down the degree se-

quence that we need to check mak-
ing sure that it is in descending or-

der. As an example let us consider.

the degree sequence 6, 6, 5, 5, 2,

2, 2, 2. Figure 3.13 shows how the

algorithm can be applied to check if
this degree sequence is graphic. The

first step is to delete the first num-

ber in the sequence 6 and decrease
the next six numbers in the sequence
by‘one. In gener‘al, if the number we
have deleted is k, we decrement the
next k numbers by one. The same al-

5441112,
@4 42111 rewrite in

_____ / descending order
331001
331100
20000
Figuré 3.13: Applying the algo-
rithm to check if a degree se-

~ gorithm is then applied to the new de-

- quence is graphic

gree sequence after ensuring that it is in descending order. We continue to apply
the algorithm again and again till we arrive at a degree sequence which is simple
enough for us to be able to say by inspection whether it is graphic. In Figure 3.13,
after applying this algorithm three times, we arrive at the sequence shown at the -
end: 2, 0,0, 0,0. This sequence requires a graph with 5 vertices of which one
vertex has degree 2, while all the other vertices are isolated. This is impossible.
So the degree sequence 2, 0,0, 0, 0 is not graphic. From this we conclude that

- the original degree sequence was also not graphic.

How does this algorithm work? When we delete the first number in the degree
sequence, we are actually deleting a vertex. Since the degree sequence is in de-
scending order, the vertex that we are deleting is the one with the highest degree in
the graph. Suppose the degree of the deleted vertex is k. Along with the vertex, k
number of edges which connect this vertex also are deleted. This we do by reduc-
ing the degree of the next k vertices by one. What remains is still a graph with one
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vertex and all the edges connected to this vertex removed. The algorithm works

because for every graph it is possible to obtain a graph which is reduced by one

vertex and the edges connected to it. The degree sequence of the reduced graph
is obtained by the algorithm. If the degree sequence which results after applying

the algorithm is not graphic, then it follows that the original sequence too was not -

graphic. Let us state this in the form of a theorem.

Theorem 3.1 If a given degree sequence (in descending order) is graphic then its
-reduced degree sequence is necessarily graphic. The reduced degree sequence is
obtained by deleting the first number in the given (descending) sequence, say k,
and decrementing the next £ numbers in the sequence by one.

- The theorem is of the form: if p is true then necessarily g is true. It follows
therefore that if g is false, then p must be false. That is, if for any given sequence
if the reduced sequence turns out not to be graphic, then the original sequence is
also not graphic.

This form of the theorem is still insufficient to allow the use of the algorithm. If the
reduced sequence is graphic, there is still no guarantee that the original sequence
is also graphic. But this is easy to show. Add a vertex to the reduced graph and
connect it to the first k vertices in the reduced degree sequence by edges. Now we
have a graph which corresponds to the original degree sequence. Hence it is easily
seen that if the reduced sequence is graphic, then the original sequence must neces-
sarily be graphic. This is just the converse of Theorem 3.1. Although this converse
of the theorem is necessary for the algorithm to work, we concentrate our attention
on Theorem 3.1 whose justification we have not yet spelled out completely.

There is one assumption that we made in our explanation of the algorithm above.
Did you notice this assumption? We assumed that the deleted vertex is actually
connected to the next k vertices in the sequence. In such a case we could say that
the graph is sequenced. A graph need not however be sequenced. Instead of being
connected to the next k vertices, the deleted vertex could be connected to some
other vertex, say, the mth vertex. So one of the next k vertices, say the ith vertex

is not connected to v;. Then the algorithm does not correspond to deleting all the

edges connected to the vertex vy. In fact, we will be deleting the wrong edge - one

of the edges of the ith vertex while leaving all the edges of the mth vertex intact! -

What we are actually doing is worse. We are deleting one end of the right edge and
one end of a wrong edge! We cannot leave half edges hanging in the graph. Does
this mean that the algorithm can only be applied in cases where v; has degree k
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and i is connected only to the next k vertxces" |

Let us look at an example of an unsequenced graph and see what the effect of
applying the algorithm is. Figure 3.14(a) shows the example graph that we have
chosen. It has 6 vertices and its degree sequence is 4, 3,2,2,2, 1. The first vertex
of the sequence v; has a degree 4. It is not connected to the next vertex in the
sequence which has degree 3 (v in the figure), but is connected instead to the last
one. This makes the graph unsequenced. Note that v, is also connected to U3, v4‘
and v5 Will the algorithm work for this unsequenced graph" :

~ Figure 3.14: Repairing an nnsequence‘d graph

Applying the algorithm to degree sequence we have chosen, we obtain the degree
sequence 2, 1, 1, 1, 1. Let us see how this works on the graph itself. The first
step starts with the deletion of vertex v;. All the edges connected to this vertex are
left dangling as in Figure 3.14(b). In step 2, one edge is deleted from each of v,
through v as in Figure 3.14(c). Now half an edge is left dangling from v4 and half
an edge from vg. In Figure 3.14(d), the two edges which are dangling have been
spliced together, thus leaving a graph which has the degree sequence 2, 1, 1, 1, 1.
This is the degree sequence that we obtain by applying the algorithm.

We have been able, with the help of the splicing technique, to apply the algorithm
for a particular unsequenced graph. The reduced sequence turned out to be graphic.




Will it be true for all unsequenced graphs that the reduced sequence obtained by
applying the algorithm will be graphic? It is clear that whenever the deleted vertex
is not connected to the next k vertices, we will have two half edges dangling. They
can always be spliced together. The only time when this will fail is if the two
vertices having broken edges are already connected by another edge. We are not
allowed to have two edges connecting the same pair of vertices. So we cannot
splice the broken edges together! Let us check whether this falsifies theorem 3.1.

When we wished to decrement the degree of v, in Figure 3.14(b) by deleting one
of its edges, we chose to delete the edge connecting v, and vy. v4 was a rather
handy vertex to have around since it was not already connected to vg, and we had
no problems in splicing the two half edges together. It is always possible to choose
such an edge. This is because the degree of v, is higher than vg since it comes
earlier in the degree sequence. So it is connected to some vertex that vg is not
connected to. This vertex is v4. So we chose to delete the edge joining vy to vy.

Is it always possible to find a handy vertex like v4 which is not connected to vg?
Let us rewrite this question in more general terms. Suppose that a graph is unse-
quenced. That is, to say v; of degree k, is not connected to v; (one of the next &
vertices), but is connected to v,,. Then deleting v, will leave a edge dangling at
Ur, and decrementing v; will leave a edge dangling at some other vertex. Let this

vertex be.uv,. The question is — is it always possible to find a vertex v, so that we

can splice the two half edges together?

The answer to the question‘i\s\ ‘yes’. This is so, simplykbecause v; appears earlier
in the degree sequence than vp,. So its degree must be the. same as v, or higher.
If it is the same, we just switch v; and v,, and we obtain a sequenced graph. If

its degree is higher then it must be connected to at least one vertex which is not

connected to v,,. This is our vertex v,.

We see therefore that theorem 3.1 holds true for an unsequenced graph. The only
question that remains is whether it holds true if there are more than one unse-
- quenced connections. But this does not pose any problem either. As we apply the

algorithm and delete edges, we will always be able to splice the dangling edges
one by one. : \

Graph theory is a relatively new branch of mathematics. Most of the work in
graph theory has been done in the twentieth century. Theorem 3.1 was proved
independently by two graph theorists, Havel in 1955, and Hakimi in 1962.

1
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BIPARTITE GRAPHS

Bipartite graphs are a class of graphks‘ whérc the ve;r'ticevsk fall into tWo distinct

groups. None of the vertices in a group is connected to another vertex in the same
group. Vertices of one group always connect to vertices of the other group. Let us
look at an example of such a graph. :

The four fairy-tale musicians of Bremen, the donkey, the dog, the cat and the cock -

are having an ice cream treat in the thieves’ den. The donkey likes strawberry,

vanilla and tooti-frooti flavours. The dog likes chocolate and vanilla. The cat likes

butterscotch, tooti-frooti, kesar pista and vanilla. The cock wants to taste all the.

flavours that the others like. Let us draw a graph of the ice cream treat. .

' Figure 3.15: The ice cream treat

We see that the vertices fall into two distinct groups — those who eat and the things
other!

There are many real life problems which can be characterized by bipartite graphs.
(One of the graphs in Figure 3.1 and its isomorph in Figure 3.3, is a bipartite
graph.) In the puzzle that follows, we will look at a class of bipartite graphs that
have an especially interesting structure.

that are eaten. Obviously none of the musician friends are interested in eating each .

The black and white party puzzle: A friendly lady in the colony hosts an un-
usual fancy dress party for children. At the beginning of the party, she dis--

tributes a cap, a jacket and a pair of trousers to each child. All of these come




"‘rqoueethafth

in only two colours ~ black and white. She also makes sure that no two

children are wearmg the same combination of dresses.

" Each child gets three gold or three sﬂver coins neatly wrapped up in colour

paper. Before the party is over each child must exchange all of his or her

“coins. The rule is that the child must exchange a coin only with another

- child who has only one garment different from his or her own. At the end of

the party the lady is puzzled. Although none of the children could see which -

coins they had, all of the silver coins have been switched with gold coins.
She tries to remember how she had distributed the coins. Help her find out.

The ﬁrst thing to do here is to get as much data as we can from the puzzle. There

are three garments each in two different colours — black or white. How many
different different dresses are possible? This tells us how many children there are.

If you have figured this out you can skip to the‘next paragraph. If you have not,
think of how many dresses are possible with the white cap. You can have either a
white jacket or a black one. With each kind of jacket you have a choice of white or
black trousers. So that gives you 2 x 2 = 4 dresses with the white cap. Four more
dresses with the black cap and that makes eight dresses. So eight children attend
the party.

We also know that four of these children received gold coins and four received
silver coins. At the end of the party, after all the exchanging was done, those who
had gold coins ended up having all silver coins and vice versa. We now have to
find out who had gold coins and who had silver. It-is not immediately obvious how
we must draw a graph for this puzzle. In fact, we will reserve that for later, for
after we have solved the puzzle. :

Let us work out a notation for showing what dress a child is wearing. If a child is
wearing, say, a white cap, a white jacket and a black pair of trousers, we can write

that down as wwb. What would the dress bwb be? To simplify the notation some
more let us write O for black and 1 for white. Then we can write down all pos51ble ;
dresses in the followmg way;..

‘Vf;75000‘OblfOidudiifiQO ibillio,iii

rmg contains all the binary’ numbers up to the thlrd place startmg e
/from Z ro.: The’ Iggest three: place bmary number 1s 111 Wthh equals 7 We can -

41
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call these ‘binary number names’ since they stand for each combmatlon of dress

that the children are wearing. Let us assume to begin w1th that the child wearing

the dress 000 (all black) had three gold coins. She must exchange each of her
coins with somebody who has only one garment dlfferent from hers Fmd who
these three other children are.

These three other children must all have had silver coins, because at the end of
the exchange child 000 had only silver coins left. Each of the other children
exchanged one silver coin with child 000. With whom d1d they exchange thelr
other sﬂver coins?

When you have worked thls out you W111 probably have found all the chlldren who
received gold coins and all those who received sﬂver coins. erte them down as

“two lists under ‘Gold’ and ‘Silver’.

Now we can draw a bipartite graph like the one in Figure 3.16(a). On the left, the
two vertices represent all the children who received gold coins at the beginning

and on the right are the children who received silver coins to begin with. Each

edge represents an exchange of coins. Fill in the appropriate binary number names

for each of the vertices. Convince yourself that the solution to the puzzle is correct -

(000) 5

(@) T (O
Figure 3.16: The graphs for the black and white party problem

- The graph for this puzzle can be shown in a far more interesting way than Fig-

ure 3.16(a). Figure 3.16(b) shows a cube or rather a wire-frame model of a cube.

~ Notice that one of the vertices of the cube is marked (000). Mark the other ver-

tices takmg care to see that connected vertices have the same d1g1ts in two of their -
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places. For instance the vertices (000) and (001) are connected since they differ
only in the 3rd place. The vertices (001) and (010) are not connected although
their digits are the same because they differ in both the second and the third place.

It is surprising to discover that the wire-

frame cube is actually a bipartite graph!

Its vertices fall into two neat groups. No ©0 ¢ ©n
two vertices in the same group are con-
nected to each other. An interesting ques- .
tion to ask is whether this is true of the
cube because of its special 3-dimensional
structure. Let us check this: what is
the analog of the cube in 2-dimensions?
That’s easy — it is the square. A square
has only 4 vertices. Is it a bipartite graph?
If we number the vertices using our binary
notation we find that it is indeed a bipartite
graph.

(10) (1)

Figure 3.17: The square is a
bipartite graph

(000),
(000) (000)

@ | ®) ! (c)
Figure 3.18: The graphs for a 3-d cube

What about the analog of the cube in higher dlmen51ons‘7 In 2-d, the cube analog,
the square 'has 22 = 4 vertices. In 3-d it has 22 = 8 vertices. We can guess that_ .

the 4-d analog of the cube, called the hypercube would have 24 = 16 vertlces We’" o

can also guess that in order to give ‘number names to't

we need 4 places ‘The problem remams of drawmg the graph correspondmg to the
4 cl cube on 2 paper. :

rtices in bmary notation
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Figure 3.19: The graph for a 4-d cube,

We can do this in one way — by squashing a 3-d cube. In Figure 3.18, we make -
one of the faces of the cube smaller and squash the cube flat to obtain the graph
in Figure 3.18(c). Obviously this graph is isomorphic with the wire frame cube in
Figure 3.18(a). Now we take another copy of the squashed cube and join the cor-
responding vertices of both the squashed cubes by parallel lines as in Figure 3.19.
Name the points appropriately starting from the corner with (0000). Remember the
rule that every vertex is connected to those vertices whose binary number differs
in only one place. Verify that you indeed get a bipartite graph.

For cubes of higher dimensions it is difficult to draw the graph on 2-d paper. But
you can write down a table of the vertex points and sort them into two groups like
we did for the puzzle. It is not difficult then to spell out the reason why any graph
of the form of an n- drmens1ona1 cubeis a b1part1te graph »

We have had a brref and cursory introduction to three topics in graph theory As
you have probably gathered, many of the problems in graph theory are both in-
teresting and accessible without a long mathematical training. One can also have

“alot of fun by solving puzzles using graphs or even designing some new puzzlesk ,
that can be tackled using graphs The black and white party puzzle, for instance,

was one that we made up while writing this booklet We invite you to create and
solve more puzzles and problems
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