Platonic Solids are solids whose faces are
congruent regular polygons. The same number of faces meet at each vertex of the Platonic Solid.

TETRAHEDRON
$E=6, V=4, F=4$

CUBE
$\mathrm{E}=12, \mathrm{~V}=8, \mathrm{~F}=6$
The sum of the angles at the centre is 360°. So the centre lies flat on the ground.

OCTAHEDRON $\mathrm{E}=12, \mathrm{~V}=6, \mathrm{~F}=8$

The sum of the angles at the centre is less than 360°. So the corner of a solid can be formed.

The sum of the plane angles meeting at a vertex should be less than 360° to form a solid. This implies that only five Platonic Solids are possible, as the table below shows.

No. of faces meeting at Type a vertex of face	3	4	5	6	7
Equilateral triangle $\mathrm{N}=3$ Angle $=60^{\circ}$	$\text { sum }=180^{\circ}$ (Tetrahedron)	$\text { sum }=240^{\circ}$ (Octahedron)	$\begin{aligned} & \text { sum }=300^{\circ} \\ & \text { (Icosahedron) } \end{aligned}$	sum $=360^{\circ}$	sum $=420^{\circ}$
$\begin{aligned} & \text { Square } \\ & \mathrm{N}=4 \\ & \text { Angle }=90^{\circ} \end{aligned}$	$\begin{aligned} & \text { sum }=270^{\circ} \\ & \text { (Cube) } \end{aligned}$	sum $=360^{\circ}$	sum $=450^{\circ}$	sum $=540^{\circ}$	sum $=630^{\circ}$
$\begin{aligned} & \text { Pentagon } \\ & \mathrm{N}=5 \\ & \text { Angle }=108^{\circ} \end{aligned}$	$\text { sum }=324^{\circ}$ (Dodecahedron)	sum $=432^{\circ}$	sum $=540^{\circ}$	sum $=648^{\circ}$	sum $=756^{\circ}$
Hexagon $N=6$ Angle $=120^{\circ}$	sum $=360^{\circ}$	sum $=480^{\circ}$	sum $=600^{\circ}$	sum $=720^{\circ}$	sum $=840^{\circ}$

