PLATONIC SOLIDS E - number of edges V - number of vertices F - number of faces Platonic Solids are solids whose faces are congruent regular polygons. The same number of faces meet at each vertex of the Platonic Solid. TETRAHEDRON E=6, V=4, F=4 The sum of the angles at the centre is 360°. So the centre lies flat on the ground. CUBE E=12, V=8, F=6 OCTAHEDRON E=12, V=6, F=8 The sum of the angles at the centre is less than 360°. So the corner of a solid can be formed. DODECAHEDRON E=30, V=20, F=12 The sum of the plane angles meeting at a vertex should be less than 360° to form a solid. This implies that only five Platonic Solids are possible, as the table below shows. ICOSAHEDRON E=30, V=12, F=20 | No. of faces meeting at a vertex of face | 3 | 4 | 5 | 6 | 7 | |--|--|--|------------------------|------------------------|------------------------| | Equilateral triangle
N = 3
Angle = 60 ⁰ | sum = 180 ⁰
(Tetrahedron) | sum = 240 ⁰
(Octahedron) | | sum = 360 ⁰ | sum = 420 ⁰ | | Square
N = 4
Angle = 90 ⁰ | sum = 270 ⁰
(Cube) | sum = 360 ⁰ | sum = 450 ⁰ | sum = 540 ⁰ | sum = 630 ⁰ | | Pentagon
N = 5
Angle = 108 ⁰ | sum = 324 ⁰
(Dodecahedron) | sum = 432 ⁰ | sum = 540 ⁰ | sum = 648 ⁰ | sum = 756 ⁰ | | Hexagon
N = 6
Angle = 120 ⁰ | sum = 360 ⁰ | sum = 480 ⁰ | sum = 600 ⁰ | sum = 720 ⁰ | sum = 840 ⁰ |